2022年黑龍江省五大連池市中考數(shù)學(xué)真題帶答案詳解(奪分金卷)_第1頁(yè)
2022年黑龍江省五大連池市中考數(shù)學(xué)真題帶答案詳解(奪分金卷)_第2頁(yè)
2022年黑龍江省五大連池市中考數(shù)學(xué)真題帶答案詳解(奪分金卷)_第3頁(yè)
2022年黑龍江省五大連池市中考數(shù)學(xué)真題帶答案詳解(奪分金卷)_第4頁(yè)
2022年黑龍江省五大連池市中考數(shù)學(xué)真題帶答案詳解(奪分金卷)_第5頁(yè)
已閱讀5頁(yè),還剩31頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

黑龍江省五大連池市中考數(shù)學(xué)真題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計(jì)10分)1、如圖,四邊形ABCD內(nèi)接于⊙O,若∠ADC=130°,則∠AOC的度數(shù)為()A.25° B.80° C.130° D.100°2、“2022年春節(jié)期間,中山市會(huì)下雨”這一事件為()A.必然事件 B.不可能事件 C.確定事件 D.隨機(jī)事件3、下列事件是確定事件的是()A.方程有實(shí)數(shù)根 B.買(mǎi)一張?bào)w育彩票中大獎(jiǎng)C.拋擲一枚硬幣正面朝上 D.上海明天下雨4、如圖,點(diǎn)O是△ABC的內(nèi)心,若∠A=70°,則∠BOC的度數(shù)是()A.120° B.125° C.130° D.135°5、如圖,是△ABC的外接圓,已知,則的大小為()A.55° B.60° C.65° D.75°二、多選題(5小題,每小題3分,共計(jì)15分)1、下列關(guān)于圓的敘述正確的有()A.對(duì)角互補(bǔ)的四邊形是圓內(nèi)接四邊形B.圓的切線垂直于圓的半徑C.正多邊形中心角的度數(shù)等于這個(gè)正多邊形一個(gè)外角的度數(shù)D.過(guò)圓外一點(diǎn)所畫(huà)的圓的兩條切線長(zhǎng)相等2、如圖,O是正△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論中正確的結(jié)論是()A.△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到B.點(diǎn)O與O′的距離為4C.∠AOB=150°D.S四邊形AOBO′=6+3E.S△AOC+S△AOB=6+3、下表時(shí)二次函數(shù)y=ax2+bx+c的x,y的部分對(duì)應(yīng)值:…………則對(duì)于該函數(shù)的性質(zhì)的判斷中正確的是()A.該二次函數(shù)有最大值B.不等式y(tǒng)>﹣1的解集是x<0或x>2C.方程y=ax2+bx+c的兩個(gè)實(shí)數(shù)根分別位于﹣<x<0和2<x<之間D.當(dāng)x>0時(shí),函數(shù)值y隨x的增大而增大4、如圖,為的直徑延長(zhǎng)線上的一點(diǎn),與相切,切點(diǎn)為,是上一點(diǎn),連接.已知,則下列結(jié)論正確的為(

)A.與相切 B.四邊形是菱形C. D.5、下列方程一定不是一元二次方程的是(

)A. B.C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計(jì)15分)1、如圖,拋物線的圖象與坐標(biāo)軸交于點(diǎn)、、,頂點(diǎn)為,以為直徑畫(huà)半圓交軸的正半軸于點(diǎn),圓心為,是半圓上的一動(dòng)點(diǎn),連接,是的中點(diǎn),當(dāng)沿半圓從點(diǎn)運(yùn)動(dòng)至點(diǎn)時(shí),點(diǎn)運(yùn)動(dòng)的路徑長(zhǎng)是__________.2、對(duì)于任意實(shí)數(shù),拋物線與軸都有公共點(diǎn).則的取值范圍是_______.3、如圖,在一塊長(zhǎng)為22m,寬為14m的矩形空地內(nèi)修建三條寬度相等的小路(陰影部分),其余部分種植花草.若花草的種植面積為240m2,則小路的寬為_(kāi)_______m.4、如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)E在邊CD上.以點(diǎn)A為中心,把△ADE順時(shí)針旋轉(zhuǎn)90°至△ABF的位置.若DE=2,則FE=___.5、如果關(guān)于的一元二次方程有實(shí)數(shù)根,那么的取值范圍是___.四、簡(jiǎn)答題(2小題,每小題10分,共計(jì)20分)1、如圖,矩形ABCD中,AB=6cm,BC=12cm..點(diǎn)M從點(diǎn)A開(kāi)始沿AB邊向點(diǎn)B以1cm/秒的速度向B點(diǎn)移動(dòng),點(diǎn)N從點(diǎn)B開(kāi)始沿BC邊以2cm/秒的速度向點(diǎn)C移動(dòng).若M,N分別從A,B點(diǎn)同時(shí)出發(fā),設(shè)移動(dòng)時(shí)間為t(0<t<6),△DMN的面積為S.(1)求S關(guān)于t的函數(shù)關(guān)系式,并求出S的最小值;(2)當(dāng)△DMN為直角三角形時(shí),求△DMN的面積.2、解方程與計(jì)算(1)

(2)計(jì)算:.五、解答題(4小題,每小題10分,共計(jì)40分)1、在△ABC與△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如圖1,若點(diǎn)D與A重合,AC與EF交于P,且∠CAE=30°,CE,求EP的長(zhǎng);(2)如圖2,若點(diǎn)D與C重合,EF與BC交于點(diǎn)M,且BM=CM,連接AE,且∠CAE=∠MCE,求證:AE+MF=CE;(3)如圖3,若點(diǎn)D與A重合,連接BE,且∠ABE∠ABC,連接BF,CE,當(dāng)BF+CE最小時(shí),直接出的值.2、在中,,,過(guò)點(diǎn)A作BC的垂線AD,垂足為D,E為線段DC上一動(dòng)點(diǎn)(不與點(diǎn)C重合),連接AE,以點(diǎn)A為中心,將線段AE逆時(shí)針旋轉(zhuǎn)90°得到線段AF,連接BF,與直線AD交于點(diǎn)G.(1)如圖,當(dāng)點(diǎn)E在線段CD上時(shí),①依題意補(bǔ)全圖形,并直接寫(xiě)出BC與CF的位置關(guān)系;②求證:點(diǎn)G為BF的中點(diǎn).(2)直接寫(xiě)出AE,BE,AG之間的數(shù)量關(guān)系.3、已知P為⊙O上一點(diǎn),過(guò)點(diǎn)P作不過(guò)圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有點(diǎn)A、B(不與P、Q重合),連接AP、BP,若∠APQ=∠BPQ(1)如圖1,當(dāng)∠APQ=45°,AP=1,BP=2時(shí),求⊙O的半徑。(2)如圖2,連接AB,交PQ于點(diǎn)M,點(diǎn)N在線段PM上(不與P、M重合),連接ON、OP,設(shè)∠NOP=α,∠OPN=β,若AB平行于ON,探究α與β的數(shù)量關(guān)系。4、如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)分別為A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接寫(xiě)出點(diǎn)B關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)B′的坐標(biāo):;(2)平移△ABC,使平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)為(2,1),請(qǐng)畫(huà)出平移后的△A1B1C1;(3)畫(huà)出△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到的△A2B2C2.-參考答案-一、單選題1、D【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠B的度數(shù),根據(jù)圓周角定理計(jì)算即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠B+∠ADC=180°,∵∠ADC=130°,∴∠B=50°,由圓周角定理得,∠AOC=2∠B=100°,故選:D.【點(diǎn)睛】本題考查的是圓內(nèi)接四邊形的性質(zhì)和圓周角定理,掌握?qǐng)A內(nèi)接四邊形的對(duì)角互補(bǔ)是解題的關(guān)鍵.2、D【分析】根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類(lèi)型即可.【詳解】解:“2022年年春節(jié)期間,中山市會(huì)下雨”這一事件為隨機(jī)事件,故選:D.【點(diǎn)睛】本題考查的是必然事件、不可能事件、隨機(jī)事件的概念,必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.3、A【分析】隨機(jī)事件:是指在一定條件下可能發(fā)生也可能不發(fā)生的事件,根據(jù)隨機(jī)事件的分類(lèi)對(duì)各個(gè)選項(xiàng)逐個(gè)分析,即可得到答案【詳解】解:.方程無(wú)實(shí)數(shù)根,因此“方程有實(shí)數(shù)”是不可能事件,所以選項(xiàng)符合題意;B.買(mǎi)一張?bào)w育彩票可能中大獎(jiǎng),有可能不中,因此是隨機(jī)事件,所以選項(xiàng)B不符合題意;C.拋擲一枚硬幣,可能正面朝上,有可能反面朝上,因此是隨機(jī)事件,所以選項(xiàng)C不符合題意;D.上海明天可能下雨,有可能不下雨,因此是隨機(jī)事件,所以選項(xiàng)D不符合題意;故選:.【點(diǎn)睛】本題考查的是確定事件與隨機(jī)事件的概念,掌握確定事件分為必然事件,不可能事件,及隨機(jī)事件的概念是解題的關(guān)鍵.4、B【解析】【分析】利用內(nèi)心的性質(zhì)得∠OBC=∠ABC,∠OCB=∠ACB,再根據(jù)三角形內(nèi)角和計(jì)算出∠OBC+∠OCB=55°,然后再利用三角形內(nèi)角和計(jì)算∠BOC的度數(shù).【詳解】解:∵O是△ABC的內(nèi)心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故選:B.【考點(diǎn)】此題主要考查了三角形內(nèi)切圓與內(nèi)心:三角形的內(nèi)心到三角形三邊的距離相等;三角形的內(nèi)心與三角形頂點(diǎn)的連線平分這個(gè)內(nèi)角.5、C【分析】由OA=OB,,求出∠AOB=130°,根據(jù)圓周角定理求出的度數(shù).【詳解】解:∵OA=OB,,∴∠BAO=.∴∠AOB=130°.∴=∠AOB=65°.故選:C.【點(diǎn)睛】此題考查了同圓中半徑相等的性質(zhì),圓周角定理:同弧所對(duì)的圓周角等于圓心角的一半.二、多選題1、ACD【解析】【分析】根據(jù)圓內(nèi)接四邊形性質(zhì)直接可判斷A選項(xiàng)正確;利用切線的性質(zhì)可判斷B選項(xiàng)錯(cuò)誤;根據(jù)正多邊形中心角的定義和多邊形外角和可對(duì)判斷C選項(xiàng)正確;根據(jù)切線長(zhǎng)定理可判斷D選項(xiàng)正確.【詳解】A.由圓內(nèi)接四邊形定義得:對(duì)角互補(bǔ)的四邊形是圓內(nèi)接四邊形,A選項(xiàng)正確;B.圓的切線垂直于過(guò)切點(diǎn)的半徑,B選項(xiàng)錯(cuò)誤;C.正多邊形中心角的度數(shù)等于這個(gè)正多邊形一個(gè)外角的度數(shù),都等于,C選項(xiàng)正確;D.過(guò)圓外一點(diǎn)引的圓的兩條切線,則切線長(zhǎng)相等,D選項(xiàng)正確.故選:ACD.【考點(diǎn)】本題考查了正多邊形與圓、切線的性質(zhì)和確定圓的條件,解題關(guān)鍵是熟練掌握有關(guān)的概念.2、ABCE【解析】【分析】證明可判斷證明是等邊三角形,可判斷利用是等邊三角形,證明可判斷由是等邊三角形,可得四邊形的面積,可判斷如圖,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)與重合,對(duì)應(yīng),同理可得:是邊長(zhǎng)為的等邊三角形,是邊長(zhǎng)為的直角三角形,從而可判斷【詳解】解:由題意得:為等邊三角形,△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到,故符合題意;如圖,連接,由是等邊三角形,則點(diǎn)O與O′的距離為4,故符合題意;故符合題意;如圖,過(guò)作于是等邊三角形,S四邊形AOBO′=故不符合題意;如圖,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)與重合,對(duì)應(yīng),同理可得:是邊長(zhǎng)為的等邊三角形,是邊長(zhǎng)為的直角三角形,同理可得:故符合題意;故選:【考點(diǎn)】本題考查的是等邊三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理與勾股定理的逆定理的應(yīng)用,全等三角形的判定與性質(zhì),熟練的做出正確的輔助線是解題的關(guān)鍵.3、BC【解析】【分析】由圖表可得二次函數(shù)y=ax2+bx+c的對(duì)稱(chēng)軸為直線x=1,a>0,即可判斷A,D不正確,由圖表可直接判斷B,C正確.【詳解】解:∵當(dāng)x=0時(shí),y=-1;當(dāng)x=2時(shí),y=-1;當(dāng)x=,y=;當(dāng)x=,y=;∴二次函數(shù)y=ax2+bx+c的對(duì)稱(chēng)軸為直線x=1,x>1時(shí),y隨x的增大而增大,x<1時(shí),y隨x的增大而減?。郺>0即二次函數(shù)有最小值則A,D錯(cuò)誤由圖表可得:不等式y(tǒng)>-1的解集是x<0或x>2;由圖表可得:方程ax2+bx+c=0的兩個(gè)實(shí)數(shù)根分別位于-<x<0和2<x<之間;所以選項(xiàng)B,C正確,故選:BC.【考點(diǎn)】本題考查了拋物線與x軸的交點(diǎn),二次函數(shù)的性質(zhì),二次函數(shù)的最值,理解圖表中信息是本題的關(guān)鍵.4、ABCD【解析】【分析】A、利用切線的性質(zhì)得出∠PCO=90°,進(jìn)而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;B、利用A項(xiàng)所求得出:∠CPB=∠BPD,進(jìn)而求出△CPB≌△DPB(SAS),即可得出答案;C、利用全等三角形的判定得出△PCO≌△BCA(ASA),進(jìn)而得出答案;D、利用四邊形PCBD是菱形,∠CPO=30°,則DP=DB,則∠DPB=∠DBP=30°,求出即可.【詳解】A、連接CO,DO,∵PC與⊙O相切,切點(diǎn)為C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD與⊙O相切,故A正確;B、由A項(xiàng)得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四邊形PCBD是菱形,故B正確;C、連接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直徑,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴PO=AB,故C正確;D、∵四邊形PCBD是菱形,∠CPO=30°,∴DP=DB,則∠DPB=∠DBP=30°,∴∠PDB=120°,故D正確;故選:ABCD.【考點(diǎn)】此題主要考查了切線的判定與性質(zhì)和全等三角形的判定與性質(zhì)以及菱形的判定與性質(zhì)等知識(shí),熟練利用全等三角形的判定與性質(zhì)是解題關(guān)鍵.5、AB【解析】【分析】根據(jù)只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程進(jìn)行分析即可.【詳解】解:A、分母含有未知數(shù),一定不是一元二次方程,故本選項(xiàng)符合題意;B、含有兩個(gè)未知數(shù),一定不是一元二次方程,故本選項(xiàng)符合題意;C、當(dāng)a=0時(shí),不是一元二次方程,當(dāng)a≠0時(shí),是一元二次方程,故本選項(xiàng)不符合題意;D、是一元二次方程,故本選項(xiàng)不符合題意.故選:AB.【考點(diǎn)】本題考查的是一元二次方程的定義,熟知只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程是解答此題的關(guān)鍵.三、填空題1、【解析】【分析】先求出A、B、E的坐標(biāo),然后求出半圓的直徑為4,由于E為定點(diǎn),P是半圓AB上的動(dòng)點(diǎn),N為EP的中點(diǎn),所以N的運(yùn)動(dòng)路經(jīng)為直徑為2的半圓,計(jì)算即可.【詳解】解:,∴點(diǎn)E的坐標(biāo)為(1,-2),令y=0,則,解得,,,∴A(-1,0),B(3,0),∴AB=4,由于E為定點(diǎn),P是半圓AB上的動(dòng)點(diǎn),N為EP的中點(diǎn),所以N的運(yùn)動(dòng)路經(jīng)為直徑為2的半圓,如圖,∴點(diǎn)運(yùn)動(dòng)的路徑長(zhǎng)是.【考點(diǎn)】本題屬于二次函數(shù)和圓的綜合問(wèn)題,考查了運(yùn)動(dòng)路徑的問(wèn)題,熟練掌握二次函數(shù)和圓的基礎(chǔ)是解題的關(guān)鍵.2、【解析】【分析】由題意易得,則有,然后設(shè),由無(wú)論a取何值時(shí),拋物線與軸都有公共點(diǎn)可進(jìn)行求解.【詳解】解:由拋物線與軸都有公共點(diǎn)可得:,即,∴,設(shè),則,要使對(duì)于任意實(shí)數(shù),拋物線與軸都有公共點(diǎn),則需滿足小于等于的最小值即可,∴,即的最小值為,∴;故答案為.【考點(diǎn)】本題主要考查二次函數(shù)的綜合,熟練掌握二次函數(shù)的綜合是解題的關(guān)鍵.3、2【解析】【分析】設(shè)小路寬為xm,則種植花草部分的面積等同于長(zhǎng)(22-x)m,寬(14-x)m的矩形的面積,根據(jù)花草的種植面積為240m2,即可得出關(guān)于x的一元二次方程,解之取其符合題意的值即可得出結(jié)論.【詳解】解:設(shè)小路寬為xm,則種植花草部分的面積等同于長(zhǎng)(22-x)m,寬(14-x)m的矩形的面積,依題意得:(22-x)(14-x)=240,整理得:x2-36x+68=0,解得:x1=2,x2=34(不合題意,舍去).故答案為:2.【考點(diǎn)】本題考查了一元二次方程的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.4、【解析】【分析】由旋轉(zhuǎn)的性質(zhì)可得BF=DE=2,∠D=∠ABF=90°,在直角△EFC中,由勾股定理可求解.【詳解】解:∵把△ADE順時(shí)針旋轉(zhuǎn)90°得△ABF,∴BF=DE=2,∠D=∠ABF=90°,∴∠ABC+∠ABF=180°,∴點(diǎn)F,點(diǎn)B,點(diǎn)C共線,在直角△EFC中,EC=6-2=4,CF=BC+BF=8.根據(jù)勾股定理得:EF=,故答案為:.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),勾股定理,靈活運(yùn)用這些性質(zhì)解決問(wèn)題是本題的關(guān)鍵.5、【解析】【分析】由一元二次方程根與系數(shù)的關(guān)鍵可得:從而列不等式可得答案.【詳解】解:關(guān)于的一元二次方程有實(shí)數(shù)根,故答案為:【考點(diǎn)】本題考查的是一元二次方程根的判別式,掌握一元二次方程根的判別式是解題的關(guān)鍵.四、簡(jiǎn)答題1、(1)27(2)【解析】【分析】(1)根據(jù)t秒時(shí),M、N兩點(diǎn)的運(yùn)動(dòng)路程,分別表示出AM、BM、BN、CN的長(zhǎng)度,由S△DMN=S矩形ABCD-S△ADM-S△BMN-S△CDN進(jìn)行列式即可得到S關(guān)于t的函數(shù)關(guān)系式,通過(guò)配方即可求得最小值;(2)當(dāng)△DMN為直角三角形時(shí),由∠MDN<90°,分∠NMD或∠MND為90°兩種情況進(jìn)行求解即可得.【詳解】(1)由題意,得AM=tcm,BN=2tcm,則BM=(6-t)cm,CN=(12-2t)cm,∵S△DMN=S矩形ABCD-S△ADM-S△BMN-S△CDN,∴S=12×6-×12t-(6-t)·2t-×6(12-2t)=t2-6t+36=(t-3)2+27,∵t=3在范圍0<t<6內(nèi),∴S的最小值為27cm2;(2)當(dāng)△DMN為直角三角形時(shí),∵∠MDN<90°,∴可能∠NMD或∠MND為90°,當(dāng)∠NMD=90°時(shí),DN2=DM2+MN2,∴(12-2t)2+62=122+t2+(6-t)2+(2t)2,解得t=0或-18,不在范圍0<t<6內(nèi),∴不可能;當(dāng)∠MND=90°時(shí),DM2=DN2+MN2,∴122+t2=(12-2t)2+62+(6-t)2+(2t)2,解得t=或6,(6不在范圍0<t<6內(nèi)舍),∴S=(-3)2+27=cm2.【考點(diǎn)】本題考查了二次函數(shù)的應(yīng)用,涉及矩形的性質(zhì)、三角形面積、二次函數(shù)的性質(zhì)、勾股定理的應(yīng)用等知識(shí),熟練掌握和靈活應(yīng)用相關(guān)知識(shí)是解題的關(guān)鍵.2、(1);(2)【解析】【分析】(1)利用配方法求解即可;(2)原式利用特殊角的三角函數(shù)值,以及零指數(shù)冪、負(fù)整數(shù)指數(shù)冪法則計(jì)算即可求出值.【詳解】解:(1)原式整理得∴∴;(2)原式=【考點(diǎn)】本題考查了一元二次方程的求解與三角函數(shù)的求解,熟練掌握運(yùn)算法則,特殊角的三角函數(shù)是解本題的關(guān)鍵.五、解答題1、(1);(2)證明見(jiàn)詳解;(3).【分析】(1)過(guò)點(diǎn)P作PG⊥EC于G,根據(jù)等腰直角三角形得出∠B=∠C=45°,根據(jù)PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根據(jù)三角形外角性質(zhì)∠EPC=75°,可求∠EPG=30°,根據(jù)30°直角三角形性質(zhì)得出EP=2EG,根據(jù)勾股定理根據(jù)EC=EG+GC=EG+,可求EG=即可;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,根據(jù)∠MAH=45°=∠HEC,可得點(diǎn)A、M、C、E四點(diǎn)共圓,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ為等腰直角三角形,根據(jù)根據(jù)勾股定理AJ=,得出∠CAE=∠MCE,可證∠JAC=∠JCA,可得AJ=JC=,先證△CHM∽△ECM,再證△AEM≌△HEC(AAS),得出EM=EC,再證△AME≌△MCF(AAS),得出AE=MF即可;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時(shí),與BE在△ABC外部時(shí),當(dāng)BE在∠ABC的平分線上時(shí),作∠ABC的平分線交AC于O,將△AEC逆時(shí)針旋轉(zhuǎn)90°得到△AFC′,過(guò)點(diǎn)O作OP⊥BC于P,則點(diǎn)E在BO上,有∠ABE=∠ABC,先證B、A、C′三點(diǎn)共線,根據(jù)兩點(diǎn)之交線段最短可得BF+CE=BF+C′F≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,此時(shí)點(diǎn)E在AC上與點(diǎn)O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根據(jù)勾股定理,當(dāng)BE在△ABC外部時(shí),∠EBA=,將△EAC逆時(shí)針旋轉(zhuǎn)90°得到△FAC′,先證B、A、C′三點(diǎn)共線,根據(jù)兩點(diǎn)之間線段最短可得BF+CE=BF+FC′≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,再證EF=BF,然后根據(jù)勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根據(jù)勾股定理即可.【詳解】解:(1)過(guò)點(diǎn)P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根據(jù)勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴點(diǎn)A、M、C、E四點(diǎn)共圓,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根據(jù)勾股定理AJ=,∵∠CAE=∠MCE,∴∠JAC+45°=∠JCA+45°,∴∠JAC=∠JCA,∴AJ=JC=,∵∠HCM=∠CEM=45°,∠HMC=∠CME,∴△CHM∽△ECM,∴∠MHC=∠MCE,∵∠EHA=∠MHC=∠MCE=∠EAH∴AE=HE,在△AEM和△HEC中,,∴△AEM≌△HEC(AAS),∴EM=EC,∴∠EMC=∠ECM,∵∠AME+∠EMC=∠ECM+∠MCF=90°,∴∠AME=∠MCF,在△AME和△MCF中,∴△AME≌△MCF(AAS),∴AE=MF,∴CE=EJ+JC=MF+AE;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時(shí),與BE在△ABC外部時(shí),當(dāng)當(dāng)BE在∠ABC的平分線上時(shí),作∠ABC的平分線交AC于O,將△AEC逆時(shí)針旋轉(zhuǎn)90°得到△AFC′,過(guò)點(diǎn)O作OP⊥BC于P,則點(diǎn)E在BO上,有∠ABE=∠ABC,∵△AEC≌△AFC′,∴∠CAE=∠C′AF,∵∠BAC′=∠BAC+∠OAC′=∠BAC+∠FAC′+∠OAF=∠BAC+∠EAC+∠OAF=∠BAC+∠EAF=180°,∴B、A、C′三點(diǎn)共線,∴BF+CE=BF+C′F≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,此時(shí)點(diǎn)E在AC上與點(diǎn)O重合,∵BO為∠ABC的平分線,OA⊥AB,OP⊥BC,∴OP=AO=AF,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠PEC=180°-∠EPC-∠C=45°,∴PC=EP=AF,∴EC=,∴AC=AE+EC=AF+=(1+)AF,∴BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF,在Rt△ABE中,根據(jù)勾股定理,∴;當(dāng)BE在△ABC外部時(shí),∠EBA=,將△EAC逆時(shí)針旋轉(zhuǎn)90°得到△FAC′,則△EAC≌△FAC′,∴AC′=AC,EC=FC′,∠EAC=∠FAC′,∵∠FEB+∠EAC=360°-∠EAF-∠BAC=360°-90°-90°=180°,∴∠FAB+∠FAC′=∠FAB+∠EAC=180°,∴B、A、C′三點(diǎn)共線,∴BF+CE=BF+FC′≥BC′,∴點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,∵∠EBA=,∠EFA=45°,∴∠EFA=∠EBA+∠BEF=45°,∴∠BEF=45°-∠EBA=45°-22.5°=22.5°,∴EF=BF,在Rt△EAF中,,∴BF=,∴AB=BF+AF=+AF=,∴CE=AE+AC=AF+AB=,在Rt△EAB中,根據(jù)勾股定理,∴.綜合.【點(diǎn)睛】本題考查等腰直角三角形性質(zhì),三角形外角性質(zhì),30°直角三角形性質(zhì),勾股定理,三角形全等判定與性質(zhì),四點(diǎn)共圓,同弧所對(duì)圓周角性質(zhì),三角形相似判定與性質(zhì),圖形旋轉(zhuǎn)性質(zhì),最短路徑問(wèn)題,角平分線性質(zhì),分類(lèi)討論思想,本題難度大,應(yīng)用知識(shí)多,是中考?jí)狠S題,利用輔助線作出正確圖形是解題關(guān)鍵.2、(1)①BC⊥CF;證明見(jiàn)詳解;②見(jiàn)詳解;(2)2AE2=4AG2+BE2.證明見(jiàn)詳解.【分析】(1)①如圖所示,BC⊥CF.根據(jù)將線段AE逆時(shí)針旋轉(zhuǎn)90°得到線段AF,得出AE=AF,∠EAF=90°,可證△BAE≌△CAF(SAS),得出∠ABE=∠ACF=45°,可得∠ECF=∠ACB+∠ACF=45°+45°=90°即可;②根據(jù)AD⊥BC,BC⊥CF.可得AD∥CF,可證△BDG∽△BCF,可得,得出即可;(2)2AE2=4AG2+BE2,延長(zhǎng)BA交CF延長(zhǎng)線于H,根據(jù)等腰三角形性質(zhì)可得AD平分∠BAC,可得∠BAD=∠CAD=,可證△BAG∽△BHF,得出HF=2AG,再證△AEC≌△AFH(AAS),得出EC=FH=2AG,利用勾股定理得出,即即可.【詳解】解:(1)①如圖所示,BC⊥CF.∵將線段AE逆時(shí)針旋轉(zhuǎn)90°得到線段AF,∴AE=AF,∠EAF=90°,∴∠EAC+∠CAF=90°,∵,,∴∠BAE+∠EAC=90°,∠ABC=∠ACB=45°,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF(SAS),∴∠ABE=∠ACF=45°,∴∠ECF=∠ACB+∠ACF=45°+45°=90°,∴BC⊥CF;②∵AD⊥BC,BC⊥CF.∴AD∥CF,∴∠BDG=∠BCF=90°,∠BGD=∠BFC,∴△BDG∽△BCF,∴,∵,AD⊥BC,∴BD=DC=,∴,∴,∴,∴BG=GF;(2)2AE2=

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論