版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
試卷第=page22頁,共=sectionpages22頁試卷第=page11頁,共=sectionpages11頁中考數(shù)學(xué)總復(fù)習(xí)《圓》能力檢測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,⊙O的半徑為5cm,直線l到點O的距離OM=3cm,點A在l上,AM=3.8cm,則點A與⊙O的位置關(guān)系是(
)A.在⊙O內(nèi) B.在⊙O上 C.在⊙O外 D.以上都有可能2、已知點在上.則下列命題為真命題的是(
)A.若半徑平分弦.則四邊形是平行四邊形B.若四邊形是平行四邊形.則C.若.則弦平分半徑D.若弦平分半徑.則半徑平分弦3、在平面直角坐標(biāo)系xOy中,已知點A(4,3),以原點O為圓心,5為半徑作⊙O,則()A.點A在⊙O上B.點A在⊙O內(nèi)C.點A在⊙O外D.點A與⊙O的位置關(guān)系無法確定4、一個點到圓的最大距離為11cm,最小距離為5cm,則圓的半徑為(
)A.16cm或6cm B.3cm或8cm C.3cm D.8cm5、已知一個三角形的三邊長分別為5、7、8,則其內(nèi)切圓的半徑為()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖是四個全等的正八邊形和一個正方形拼成的圖案,已知正方形的面積為4,則一個正八邊形的面積為____.2、如圖,圓錐的母線長為10cm,高為8cm,則該圓錐的側(cè)面展開圖(扇形)的弧長為_____cm.(結(jié)果用π表示)3、如圖,直線、相交于點,半徑為1cm的⊙的圓心在直線上,且與點的距離為8cm,如果⊙以2cm/s的速度,由向的方向運動,那么_________秒后⊙與直線相切.4、如圖,圓錐的母線長OA=6,底面圓的半徑為,一只小蟲在圓線底面的點A處繞圓錐側(cè)面一周又回到點A處,則小蟲所走的最短路程為___________(結(jié)果保留根號)5、如圖,在⊙O中,的度數(shù)等于250°,半徑OC垂直于弦AB,垂足為D,那么AC的度數(shù)等于________度.三、解答題(5小題,每小題10分,共計50分)1、在中,,,D為的中點,E,F(xiàn)分別為,上任意一點,連接,將線段繞點E順時針旋轉(zhuǎn)90°得到線段,連接,.(1)如圖1,點E與點C重合,且的延長線過點B,若點P為的中點,連接,求的長;(2)如圖2,的延長線交于點M,點N在上,且,求證:;(3)如圖3,F(xiàn)為線段上一動點,E為的中點,連接,H為直線上一動點,連接,將沿翻折至所在平面內(nèi),得到,連接,直接寫出線段的長度的最小值.2、已知拋物線經(jīng)過點(m,﹣4),交x軸于A,B兩點(A在B左邊),交y軸于C點對于任意實數(shù)n,不等式恒成立.(1)拋物線解析式;(2)在BC上方的拋物線對稱軸上是否存在點D,使得∠BDC=2∠BAC,若有求出點D的坐標(biāo),若沒有,請說明理由;(3)將拋物線沿x軸正方向平移一個單位,把得到的圖象在x軸下方的部分沿x軸向上翻折,圖的其余部分保持不變,得到一個新的圖象G,若直線y=x+b與新圖象G有四個交點,求b的取值范圍(直接寫出結(jié)果即可).3、已知的半徑是.弦.求圓心到的距離;弦兩端在圓上滑動,且保持,的中點在運動過程中構(gòu)成什么圖形,請說明理由.4、用反證法證明:一條線段只有一個中點.5、如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,點F為BC的中點,連接EF和AD.(1)求證:EF是⊙O的切線;(2)若⊙O的半徑為2,∠EAC=60°,求AD的長.-參考答案-一、單選題1、A【解析】【詳解】如圖,連接OA,則在直角△OMA中,根據(jù)勾股定理得到OA=.∴點A與⊙O的位置關(guān)系是:點A在⊙O內(nèi).故選A.2、B【解析】【分析】根據(jù)圓的有關(guān)性質(zhì)、垂徑定理及其推論、特殊平行四邊形的判定與性質(zhì)依次對各項判斷即可.【詳解】A.∵半徑平分弦,∴OB⊥AC,AB=BC,不能判斷四邊形OABC是平行四邊形,假命題;B.∵四邊形是平行四邊形,且OA=OC,∴四邊形是菱形,∴OA=AB=OB,OA∥BC,∴△OAB是等邊三角形,∴∠OAB=60o,∴∠ABC=120o,真命題;C.∵,∴∠AOC=120o,不能判斷出弦平分半徑,假命題;D.只有當(dāng)弦垂直平分半徑時,半徑平分弦,所以是假命題,故選:B.【考點】本題主要考查命題與證明,涉及垂徑定理及其推論、菱形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)等知識,解答的關(guān)鍵是會利用所學(xué)的知識進(jìn)行推理證明命題的真假.3、A【解析】【分析】先求出點A到圓心O的距離,再根據(jù)點與圓的位置依據(jù)判斷可得.【詳解】解:∵點A(4,3)到圓心O的距離,∴OA=r=5,∴點A在⊙O上,故選:A.【考點】本題考查了對點與圓的位置關(guān)系的判斷.關(guān)鍵要記住若半徑為,點到圓心的距離為,則有:當(dāng)時,點在圓外;當(dāng)時,點在圓上,當(dāng)時,點在圓內(nèi),也考查了勾股定理的應(yīng)用.4、B【解析】【分析】最大距離與最小距離的和是直徑;當(dāng)點P在圓外時,點到圓的最大距離與最小距離的差是直徑,由此得解.【詳解】當(dāng)點P在圓內(nèi)時,最近點的距離為5cm,最遠(yuǎn)點的距離為11cm,則直徑是16cm,因而半徑是8cm;當(dāng)點P在圓外時,最近點的距離為5cm,最遠(yuǎn)點的距離為11cm,則直徑是6cm,因而半徑是3cm;故選B.【考點】本題考查了點與圓的位置關(guān)系,利用線段的和差得出直徑是解題關(guān)鍵,分類討論,以防遺漏.5、C【解析】【分析】先依據(jù)題意畫出圖形,如圖(見解析),過點A作于D,利用勾股定理可求出AD的長,再根據(jù)三角形內(nèi)切圓的性質(zhì)、三角形的面積公式即可得出答案.【詳解】解:如圖,,內(nèi)切圓O的半徑為,切點為,則過點A作于D,設(shè),則由勾股定理得:則,即解得,即又即解得則內(nèi)切圓的半徑為故選:C.【考點】本題考查了三角形內(nèi)切圓的性質(zhì)、勾股定理等知識點,讀懂題意,正確畫出圖形,并求出AD的長是解題關(guān)鍵.二、填空題1、【解析】【分析】根據(jù)正方形的性質(zhì)得到AB=2,根據(jù)由正八邊形的特點求出∠AOB的度數(shù),過點B作BD⊥OA于點D,根據(jù)勾股定理求出BD的長,由三角形的面積公式求出△AOB的面積,進(jìn)而可得出結(jié)論.【詳解】解:設(shè)正八邊形的中心為O,連接OA,OB,如圖所示,∵正方形的面積為4,∴AB=2,∵AB是正八邊形的一條邊,∴∠AOB==45°.過點B作BD⊥OA于點D,設(shè)BD=x,則OD=x,OB=OA=x,∴AD=x-x,在Rt△ADB中,BD2+AD2=AB2,即x2+(x-x)2=22,解得x2=2+,∴S△AOB=OA?BD=×x2=+1,∴S正八邊形=8S△AOB=8×(+1)=8+8,故答案為:8+8.【考點】本題考查的是正多邊形和圓,正方形的性質(zhì),三角形面積的計算,根據(jù)題意畫出圖形,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵.2、【解析】【分析】先求出圓錐的底面半徑,然后根據(jù)圓錐的展開圖為扇形,結(jié)合圓周長公式進(jìn)行求解即可.【詳解】設(shè)底面圓的半徑為rcm,由勾股定理得:r==6,∴2πr=2π×6=12π,故答案為12π.【考點】本題考查了圓錐的計算,解答本題的關(guān)鍵是掌握圓錐側(cè)面展開圖是個扇形,要熟練掌握扇形與圓錐之間的聯(lián)系.3、3或5【解析】【分析】分類討論:當(dāng)點P在當(dāng)點P在射線OA時⊙P與CD相切,過P作PE⊥CD與E,根據(jù)切線的性質(zhì)得到PE=1cm,再利用含30°的直角三角形三邊的關(guān)系得到OP=2PE=2cm,則⊙P的圓心在直線AB上向右移動了(8-2)cm后與CD相切,即可得到⊙P移動所用的時間;當(dāng)點P在射線OB時⊙P與CD相切,過P作PE⊥CD與F,同前面一樣易得到此時⊙P移動所用的時間.【詳解】當(dāng)點P在射線OA時⊙P與CD相切,如圖,過P作PE⊥CD與E,∴PE=1cm,∵∠AOC=30°,∴OP=2PE=2cm,∴⊙P的圓心在直線AB上向右移動了(8-2)cm后與CD相切,∴⊙P移動所用的時間==3(秒);當(dāng)點P在射線OB時⊙P與CD相切,如圖,過P作PE⊥CD與F,∴PF=1cm,∵∠AOC=∠DOB=30°,∴OP=2PF=2cm,∴⊙P的圓心在直線AB上向右移動了(8+2)cm后與CD相切,∴⊙P移動所用的時間==5(秒).故答案為3或5.【考點】本題考查直線與圓的位置關(guān)系:直線與有三種位置關(guān)系(相切、相交、相離).也考查了切線的性質(zhì).解題關(guān)鍵是熟練掌握以上性質(zhì).4、6【解析】【分析】利用圓錐的底面周長等于側(cè)面展開圖的弧長可得圓錐側(cè)面展開圖的圓心角,求出側(cè)面展開圖中兩點間的距離即為最短距離.【詳解】∵底面圓的半徑為,∴圓錐的底面周長為2×=3,設(shè)圓錐的側(cè)面展開圖的圓心角為n.∴,解得n=90°,如圖,AA′的長就是小蟲所走的最短路程,∵∠O=90°,OA′=OA=6,∴AA′=.故答案為:6.【考點】本題考查了圓錐的計算,考查圓錐側(cè)面展開圖中兩點間距離的求法;把立體幾何轉(zhuǎn)化為平面幾何來求是解決本題的突破點.5、55【解析】【分析】連接OA,OB,由已知可得∠AOB=360°﹣250°=110°,再根據(jù)垂徑定理即可得解.【詳解】連接OA,OB,由已知可得∠AOB=360°﹣250°=110°,∵OC⊥AB,∴,∴∠AOC=∠AOB=55°.故答案為55.【考點】本題主要考查圓心角定理與垂徑定理,解此題的關(guān)鍵在于熟練掌握其知識點.三、解答題1、(1)2(2)見解析(3)【解析】【分析】(1)根據(jù)已知條件可得為的中點,證明,進(jìn)而根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求解;(2)過點作交的延長線于點,證明,,可得,進(jìn)而根據(jù),即可得出結(jié)論,(3)根據(jù)(2)可知,當(dāng)點在線段上運動時,點在平行于的線段上運動,根據(jù)題意作出圖形,根據(jù)點到圓上的距離求最值即可求解.(1)如圖,連接將線段繞點E順時針旋轉(zhuǎn)90°得到線段,是等腰直角三角形,P為FG的中點,,,,,D為的中點,,,,,在中,;(2)如圖,過點作交的延長線于點,,,,,是等腰直角三角形,,,在與中,
,,,,又,,
,,,,,
又,,,,,,,;(3)由(2)可知,則當(dāng)點在線段上運動時,點在平行于的線段上運動,將沿翻折至所在平面內(nèi),得到,E為的中點,,,則點在以為圓心為半徑的圓上運動,當(dāng)三點共線時,最小,如圖,當(dāng)運動到與點重合時,取得最小值,.如圖,當(dāng)點運動到與點重合時,取得最小值,此時,則.綜上所述,的最小值為.【考點】本題考查了等腰三角形的性質(zhì)與判定,直角三角形斜邊上的中線,勾股定理,全等三角形的性質(zhì)與判定,軸對稱線的性質(zhì),點到圓上一點距離最值問題,正確的添加輔助線是解題的關(guān)鍵.2、10參考答案:1.(1);(2)點D的坐標(biāo)為(1,-1);(3).【解析】【分析】(1)由不等式恒成立可得點(m,﹣4)是拋物線的頂點坐標(biāo),求出,將點(﹣t,﹣4)代入求出t的值即可;(2)作線段BC的垂直平分線交對稱軸于點D,交BC于E,則點D是△ABC的外心,可得∠BDC=2∠BAC,然后求出直線BC,直線DE的解析式即可解決問題;(3)作出圖象G,求出直線y=x+b與圖象G有三個交點時b的值,則根據(jù)圖象可得直線y=x+b與圖象G有四個交點時b的取值范圍.(1)解:拋物線的對稱軸為,∵不等式恒成立,∴拋物線的頂點坐標(biāo)為(m,﹣4),∴,將點(﹣t,﹣4)代入得:,解得:(舍去),,∴拋物線解析式為:;(2)解:令,解得:,,∴A(-1,0),B(3,0),由可得C(0,-3),對稱軸為,作線段BC的垂直平分線交對稱軸于點D,交BC于E,∴E(,),∵拋物線對稱軸是線段AB的垂直平分線,∴點D是△ABC的外心,∴∠BDC=2∠BAC,設(shè)直線BC的解析式為,代入B(3,0),C(0,-3)得,解得:,∴直線BC的解析式為,設(shè)直線DE的解析式為,代入E(,)得,∴m=0,∴直線DE的解析式為,當(dāng)時,,∴點D的坐標(biāo)為(1,-1);(3)解:圖象G如圖所示,由平移可知圖象G過點(0,0),當(dāng)直線y=x+b過點(0,0)時,b=0,將拋物線沿x軸正方向平移一個單位后解析式為,沿x軸向上翻折后解析式為,由,得,整理得:,令,解得:,故若直線y=x+b與新圖象G有四個交點,b的取值范圍為:.【考點】本題考查了待定系數(shù)法的應(yīng)用,二次函數(shù)的圖象和性質(zhì),一次函數(shù)的圖象和性質(zhì),三角形外心的性質(zhì),二次函數(shù)圖象的平移及翻轉(zhuǎn)等知識,熟練掌握數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵.3、(1)3;(2)在運動過程中,點運動的軌跡是以為圓心,為半徑的圓【解析】【分析】(1)利用垂徑定理,然后根據(jù)勾股定理即可求得弦心距OD的長;(2)根據(jù)圓的定義即可確定.【詳解】解:連接,作于.就是圓心到弦的距離.在中,∵∴是弦的中點在中,,,圓心到弦的距離為.由知:是弦的中點中點在運動過程中始終保持∴據(jù)圓的定義,在運動過程中,點運動的軌跡是以為圓心,為半徑的圓.【考點】考查垂徑定理,作出輔助線,構(gòu)造直角三角形是解題的關(guān)鍵.4、見解析.【解析】【分析】首先假設(shè)結(jié)論的反面:一條線段可以有多個中點,不妨設(shè)有兩個,根據(jù)中點的定義得出矛盾,即可證得.【詳解】解:已知:一條線段,點M為的中點.求證:線段只有一個中點M,證明:假設(shè)線段有兩個中點,分別為點M、N,不妨設(shè)點M在點N的左
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年遼寧石化職業(yè)技術(shù)學(xué)院馬克思主義基本原理概論期末考試題及答案解析(必刷)
- 2025年浙江海洋大學(xué)馬克思主義基本原理概論期末考試模擬題附答案解析(奪冠)
- 2025年鄢陵縣招教考試備考題庫帶答案解析
- 2024年策勒縣幼兒園教師招教考試備考題庫附答案解析(必刷)
- 2025年新絳縣幼兒園教師招教考試備考題庫附答案解析(奪冠)
- 2025年隴南師范高等??茖W(xué)校單招職業(yè)傾向性考試題庫附答案解析
- 2024年陽高縣幼兒園教師招教考試備考題庫附答案解析(奪冠)
- 2025年容縣幼兒園教師招教考試備考題庫及答案解析(必刷)
- 2024年隆子縣招教考試備考題庫附答案解析(必刷)
- 2025年山東職業(yè)學(xué)院單招職業(yè)傾向性考試題庫帶答案解析
- 2026中國電信四川公用信息產(chǎn)業(yè)有限責(zé)任公司社會成熟人才招聘備考題庫完整參考答案詳解
- 2026年黃委會事業(yè)單位考試真題
- 供水管網(wǎng)及配套設(shè)施改造工程可行性研究報告
- 2026年及未來5年中國高帶寬存儲器(HBM)行業(yè)市場調(diào)查研究及投資前景展望報告
- 英語試卷浙江杭州市學(xué)軍中學(xué)2026年1月首考適應(yīng)性考試(12.29-12.30)
- 生產(chǎn)車間停線制度
- 關(guān)于生產(chǎn)部管理制度
- CMA質(zhì)量手冊(2025版)-符合27025、評審準(zhǔn)則
- (一模)2026年沈陽市高三年級教學(xué)質(zhì)量監(jiān)測(一)生物試卷(含答案)
- 金屬非金屬礦山安全操作規(guī)程
- 壓鑄鋁合金熔煉改善
評論
0/150
提交評論