版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數學下冊《平行四邊形》專項訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、直角三角形的兩條直角邊分別為5和12,那么這個三角形的斜邊上的中線長為()A.6 B.6.5 C.10 D.132、如圖,將矩形紙片ABCD沿BD折疊,得到△BC′D,C′D與AB交于點E,若∠1=40°,則∠2的度數為()A.25° B.20° C.15° D.10°3、如圖,在矩形ABCD中,AB=1,BC=2,將其折疊,使AB邊落在對角線AC上,得到折痕AE,則點E到點B的距離為()A. B. C. D.4、如圖,矩形ABCD中,DE⊥AC于E,若∠ADE=2∠EDC,則∠BDE的度數為()A.36° B.30° C.27° D.18°5、如圖,在正方形有中,E是AB上的動點,(不與A、B重合),連結DE,點A關于DE的對稱點為F,連結EF并延長交BC于點G,連接DG,過點E作⊥DE交DG的延長線于點H,連接,那么的值為()A.1 B. C. D.2第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在平行四邊形ABCD中,∠B=45°,AD=8,E、H分別為邊AB、CD上一點,將?ABCD沿EH翻折,使得AD的對應線段FG經過點C,若FG⊥CD,CG=4,則EF的長度為_____.2、如圖,在正方形ABCD中,AB=2,取AD的中點E,連接EB,延長DA至F,使EF=EB,以線段AF為邊作正方形AFGH,點H在線段AB上,則的值是_____.3、如圖,在直角三角形ABC中,∠B=90°,點D是AC邊上的一點,連接BD,把△CBD沿著BD翻折,點C落在AB邊上的點E處,得到△EBD,連接CE交BD于點F,BG為△EBD的中線.若BC=4,△EBG的面積為3,則CD的長為____________4、如圖,每個小正方形的邊長都為1,△ABC是格點三角形,點D為AC的中點,則線段BD的長為_____.5、正方形ABCD的邊長是8cm,點M在BC邊上,且MC=2cm,P是正方形邊上的一個動點,連接PB交AM于點N,當PB=AM時,PN的長是_____.三、解答題(5小題,每小題10分,共計50分)1、在菱形ABCD中,∠ABC=60°,P是直線BD上一動點,以AP為邊向右側作等邊APE(A,P,E按逆時針排列),點E的位置隨點P的位置變化而變化.(1)如圖1,當點P在線段BD上,且點E在菱形ABCD內部或邊上時,連接CE,則BP與CE的數量關系是,BC與CE的位置關系是;(2)如圖2,當點P在線段BD上,且點E在菱形ABCD外部時,(1)中的結論是否還成立?若成立,請予以證明;若不成立,請說明理由;(3)當點P在直線BD上時,其他條件不變,連接BE.若AB=2,BE=2,請直接寫出APE的面積.2、如圖所示,在邊長為1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D兩點的一動點,N是CD上一動點,且AM+CN=1.(1)證明:無論M,N怎樣移動,△BMN總是等邊三角形;(2)求△BMN面積的最小值.3、如圖,?ABCD的對角線AC,BD相交于點O,點E,點F在線段BD上,且DE=BF.求證:AE∥CF.4、如圖,四邊形ABCD是平行四邊形,延長DA,BC,使得AE=CF,連接BE,DF.(1)求證:△ABE≌△CDF;(2)連接BD,若∠1=32°,∠ADB=22°,請直接寫出當∠ABE=°時,四邊形BFDE是菱形.5、D、分別是不等邊三角形即的邊、的中點.是平面上的一動點,連接、,、分別是、的中點,順次連接點、、、.(1)如圖,當點在內時,求證:四邊形是平行四邊形;(2)若四邊形是菱形,點所在位置應滿足什么條件?(直接寫出答案,不需說明理由.)-參考答案-一、單選題1、B【解析】【分析】根據勾股定理可求得直角三角形斜邊的長,再根據直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:∵直角三角形兩直角邊長為5和12,∴斜邊=,∴此直角三角形斜邊上的中線的長==6.5.故選:B.【點睛】本題主要考查勾股定理及直角三角形斜邊中線定理,熟練掌握勾股定理及直角三角形斜邊中線定理是解題的關鍵.2、D【解析】【分析】根據矩形的性質,可得∠ABD=40°,∠DBC=50°,根據折疊可得∠DBC′=∠DBC=50°,最后根據∠2=∠DBC′?∠DBA進行計算即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,CD∥AB,∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,由折疊可得∠DBC′=∠DBC=50°,∴∠2=∠DBC′?∠DBA=50°?40°=10°,故選D.【點睛】本題考查了長方形性質,平行線性質,折疊性質,角的有關計算的應用,關鍵是求出∠DBC′和∠DBA的度數.3、C【解析】【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解設BE=x,在Rt△EFC中利用勾股定理列出方程,通過解方程可得答案.【詳解】解:矩形ABCD,設BE=x,∵AE為折痕,∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,∴Rt△EFC中,,EC=2-x,∴,解得:,則點E到點B的距離為:.故選:C.【點睛】本題考查了勾股定理和矩形與折疊問題;二次根式的乘法運算,利用對折得到,再利用勾股定理列方程是解本題的關鍵.4、B【解析】【分析】根據已知條件可得以及的度數,然后求出各角的度數便可求出.【詳解】解:在矩形ABCD中,,∵,∴,,∵,∴,∵,∴,∴,∴.故選:B.【點睛】題目主要考查矩形的性質,三角形內角和及等腰三角形的性質,理解題意,綜合運用各個性質是解題關鍵.5、B【解析】【分析】作輔助線,構建全等三角形,證明△DAE≌△ENH,得AE=HN,AD=EN,再說明△BNH是等腰直角三角形,可得結論.【詳解】解:如圖,在線段AD上截取AM,使AM=AE,,∵AD=AB,∴DM=BE,∵點A關于直線DE的對稱點為F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∠1=∠2,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵,∴Rt△DFG≌Rt△DCG(HL),∴∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,∴∠1=∠BEH,在△DME和△EBH中,∵,∴△DME≌△EBH(SAS),∴EM=BH,Rt△AEM中,∠A=90°,AM=AE,∴,∴,即=.故選:B.【點睛】本題考查了正方形的性質,全等三角形的判定定理和性質定理,等知識,解決本題的關鍵是作出輔助線,利用正方形的性質得到相等的邊和相等的角,證明三角形全等.二、填空題1、【解析】【分析】延長CF與AB交于點M,由平行四邊形的性質得BC長度,GM⊥AB,由折疊性質得GF,∠EFM,進而得FM,再根據△EFM是等腰直角三角形,便可求得結果.【詳解】解:延長CF與AB交于點M,∵FG⊥CD,AB∥CD,∴CM⊥AB,∵∠B=45°,BC=AD=8,∴CM=4,由折疊知GF=AD=8,∵CG=4,∴MF=CM-CF=CM-(GF-CG)=4-4,∵∠EFC=∠A=180°-∠B=135°,∴∠MFE=45°,∴EF=MF=(4-4)=8-4.故答案為:8-4.【點睛】本題主要考查了平行四邊形的性質,折疊的性質,解直角三角形的應用,關鍵是作輔助線構造直角三角形.2、【解析】【分析】設,由正方形的性質和勾股定理求出的長,可得的長,再求出的長,得出的長,進而可得結果.【詳解】解:設,四邊形為正方形,,,點為的中點,,,,,四邊形為正方形,,,故答案為:.【點睛】本題考查了正方形的性質以及勾股定理,解題的關鍵是熟練掌握正方形的性質,由勾股定理求出的長.3、【解析】【分析】由折疊的性質可得,,,,由勾股定理可得,,根據題意可得,,求得的長度,即可求解.【詳解】解:由折疊的性質可得,,,,∴為等腰直角三角形,為的中點,∴由勾股定理可得,∴∵BG為△EBD的中線,△EBG的面積為3∴,解得∴由勾股定理得:故答案為:【點睛】此題考查了折疊的性質,勾股定理以及直角三角形的性質,解題的關鍵是靈活利用相關性質進行求解.4、##【解析】【分析】根據勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判斷出△ABC是直角三角形,然后根據直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】解:,,,,∴∠ABC=90°,∵點D為AC的中點,∴BD為AC邊上的中線,∴BD=AC,故答案為:【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質,勾股定理,勾股定理逆定理的應用,判斷出△ABC是直角三角形是解題的關鍵.5、5cm或5.2cm【解析】【分析】當點P在BC上,AM>BP,當點P在AB上,AM>BP,當點P在CD上,如圖,根據PB=AM,可證Rt△ABM≌Rt△BCP(HL),可證BP⊥AM,根據勾股定理可求AM=,根據三角形面積可求,可求PN=BP-BN;當點P在AD上,如圖,可證Rt△ABM≌Rt△BAP(HL),再證AN=PN=BN=MN,根據AM=BP=10cm,可求PN=cm,【詳解】解:當點P在BC上,AM>BP,當點P在AB上,AM>BP,不合題意,舍去;當點P在CD上,如圖,∵PB=AM∵四邊形ABCD為正方形,∴AB=BC=AD=CD=8,在Rt△ABM和Rt△BCP中,,∴Rt△ABM≌Rt△BCP(HL),∴∠MAB=∠PBC,∵∠MAB+∠AMB=90°,∴∠PBC+∠AMB=90°,∴∠BNM=180°-∠PBC-∠AMB=90°,∴BP⊥AM,∵MC=2cm,∴BM=BC-MC=8-2=6cm,∴AM=,∴,∴,∴PN=BP-BN=AM-BN=10-4.8=5.2cm,當點P在AD上,如圖,在Rt△ABM和Rt△BAP中,,∴Rt△ABM≌Rt△BAP(HL),∴BM=AP,∠AMB=∠BPA,∠MAB=∠PBA,∴AN=BN,∵AD∥BC,∴∠PAN=∠NMB=∠APN,∴AN=PN=BN=MN,∵AM=BP=10cm,∴PN=cm,∴PN的長為5cm或5.2cm.故答案為5cm或5.2cm.【點睛】本題考查正方形的性質,三角形全等判定與性質,勾股定理,等腰三角形判定與性質,分類討論思想,掌握正方形的性質,三角形全等判定與性質,勾股定理,等腰三角形判定與性質,分類討論思想是解題關鍵.三、解答題1、(1)BP=CE,CE⊥BC;(2)仍然成立,見解析;(3)31【分析】(1)連接AC,根據菱形的性質和等邊三角形的性質證明△BAP≌△CAE即可證得結論;(2)(1)中的結論成立,用(1)中的方法證明△BAP≌△CAE即可;(3)分兩種情形:當點P在BD的延長線上時或點P在線段DB的延長線上時,連接AC交BD于點O,由∠BCE=90°,根據勾股定理求出CE的長即得到BP的長,再求AO、PO、PD的長及等邊三角形APE的邊長可得結論.【詳解】解:(1)如圖1,連接AC,延長CE交AD于點H,∵四邊形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等邊三角形,∴AB=AC,∠BAC=60°;∵△APE是等邊三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE=60°﹣∠PAC,∴△BAP≌△CAE(SAS),∴BP=CE;∵四邊形ABCD是菱形,∴∠ABP=∠ABC=30°,∴∠ABP=∠ACE=30°,∵∠ACB=60°,∴∠BCE=60°+30°=90°,∴CE⊥BC;故答案為:BP=CE,CE⊥BC;(2)(1)中的結論:BP=CE,CE⊥AD仍然成立,理由如下:如圖2中,連接AC,設CE與AD交于H,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等邊三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等邊三角形,∴AP=AE,∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE(SAS),∴BP=CE,∠ACE=∠ABD=30°,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,∴CE⊥AD;∴(1)中的結論:BP=CE,CE⊥AD仍然成立;(3)如圖3中,當點P在BD的延長線上時,連接AC交BD于點O,連接CE,BE,作EF⊥AP于F,∵四邊形ABCD是菱形,∴AC⊥BDBD平分∠ABC,∵∠ABC=60°,AB=2,∴∠ABO=30°,∴AO=AB=,OB=AO=3,∴BD=6,由(2)知CE⊥AD,∵AD∥BC,∴CE⊥BC,∵BE=2,BC=AB=2,∴CE==8,由(2)知BP=CE=8,∴DP=2,∴OP=5,∴AP===2,∵△APE是等邊三角形,∴S△AEP=×(2)2=7,如圖4中,當點P在DB的延長線上時,同法可得AP===2,∴S△AEP=×(2)2=31,【點睛】此題是四邊形的綜合題,重點考查菱形的性質、等邊三角形的性質、全等三角形的判定與性質、勾股定理等知識點,解題的關鍵是正確地作出解題所需要的輔助線,將菱形的性質與三角形全等的條件聯(lián)系起來,此題難度較大,屬于考試壓軸題.2、(1)見解析;(2)△BMN面積的最小值為【分析】(1)連接BD,證明△AMB≌△DNB,則可得BM=BN,∠MBA=∠NBD,由菱形的性質易得∠MBN=60゜,從而可證得結論成立;(2)過點B作BE⊥MN于點E.【詳解】(1)證明:如圖所示,連接BD,在菱形ABCD中,∠DAB=60°,∴∠ADB=∠NDB=60°,故△ADB是等邊三角形,∴AB=BD,又AM+CN=1,DN+CN=1,∴AM=DN,在△AMB和△DNB中,,∴△AMB≌△DNB(SAS),∴BM=BN,∠MBA=∠NBD,又∠MBA+∠DBM=60°,∴∠NBD+∠DBM=60°,即∠MBN=60°,∴△BMN是等邊三角形;(2)過點B作BE⊥MN于點E.設BM=BN=MN=x,則,故,∴當BM⊥AD時,x最小,此時,,.∴△BMN面積的最小值為.【點睛】本題考查了菱形的性質,等邊三角形的判定與性質,垂線段最短,全等三角形的判定與性質等知識,關鍵是作輔助線證三角形全等.3、見解析【分析】首先根據平行四邊形的性質推出AD=CB,AD∥BC,得到∠ADE=∠CBF,從而證明△ADE≌△CBF,得到∠AED=∠CFB,即可證明結論.【詳解】證:∵四邊形ABCD是平行四邊形,∴AD=CB,AD∥BC,∴∠ADE=∠CBF,在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴∠AED=∠CFB,∴AE∥CF.【點睛】本題考查平行四邊形的性質,以及全等三角形的判定與性質等,掌握平行四邊形的基本性質,準確證明全等三角形并利用其性質是解題關鍵.4、(1)見解析;(2)12
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年安徽郵電職業(yè)技術學院高職單招職業(yè)適應性測試模擬試題有答案解析
- 2026年阜陽幼兒師范高等??茖W校單招綜合素質考試備考試題帶答案解析
- 2026年邯鄲幼兒師范高等??茖W校單招職業(yè)技能考試模擬試題帶答案解析
- 2026年河北科技學院單招綜合素質考試模擬試題帶答案解析
- 體檢結果解讀合同(2025年服務條款)
- 2026年湖南理工職業(yè)技術學院單招綜合素質考試備考題庫帶答案解析
- 2026年福建農林大學金山學院單招綜合素質考試備考題庫帶答案解析
- 2026年甘肅林業(yè)職業(yè)技術學院高職單招職業(yè)適應性考試備考試題帶答案解析
- 2026年廣西教育學院高職單招職業(yè)適應性測試模擬試題有答案解析
- 2026年河北東方學院單招綜合素質考試模擬試題帶答案解析
- 社會組織財務內部控制管理制度
- 醫(yī)院門診投訴分析
- 普外科護士長年終述職
- 新高考3+1+2政策解讀及選科指導+課件-2025-2026學年高一上學期生涯規(guī)劃主題班會
- 感染科入科教育
- 化工電氣儀表調試方案(3篇)
- GB/T 33820-2025金屬材料延性試驗多孔狀和蜂窩狀金屬高速壓縮試驗方法
- 友善社會主義核心價值觀
- 外墻外保溫系統(tǒng)應用技術標準(巖棉) DG-TJ08-2126-2023
- 電泳工藝原理培訓課件
- 2025年高等數學基礎考試試卷及答案
評論
0/150
提交評論