綜合解析人教版8年級數(shù)學上冊《軸對稱》專題練習試題(詳解版)_第1頁
綜合解析人教版8年級數(shù)學上冊《軸對稱》專題練習試題(詳解版)_第2頁
綜合解析人教版8年級數(shù)學上冊《軸對稱》專題練習試題(詳解版)_第3頁
綜合解析人教版8年級數(shù)學上冊《軸對稱》專題練習試題(詳解版)_第4頁
綜合解析人教版8年級數(shù)學上冊《軸對稱》專題練習試題(詳解版)_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數(shù)學上冊《軸對稱》專題練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,已知△ABC,AB<BC,用尺規(guī)作圖的方法在BC上取一點P,使得PA+PC=BC,則下列選項正確的是(

)A. B.C. D.2、如圖,在Rt△ABC中,∠ABC=90°,分別以點A和點B為圓心,大于AB的長為半徑作弧相交于點D和點E,直線DE交AC于點F,交AB于點G,連接BF,若BF=3,AG=2,則BC=()A.5 B.4 C.2 D.23、如圖,△ABC和△ECD都是等腰直角三角形,△ABC的頂點A在△ECD的斜邊DE上.下列結論:①△ACE≌△BCD;②∠DAB=∠ACE;③AE+AC=CD;④△ABD是直角三角形.其中正確的有()A.1個 B.2個 C.3個 D.4個4、如圖,在中,,,點是邊上任意一點,過點作交于點,則的度數(shù)是(

).A. B. C. D.5、下列標志中,可以看作是軸對稱圖形的是()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,已知AD是△ABC的中線,E是AC上的一點,BE交AD于F,AC=BF,∠DAC=24°,∠EBC=32°,則∠ACB=_____.2、如圖折疊一張矩形紙片,已知∠1=70°,則∠2的度數(shù)是__.3、BC是等腰△ABC和等腰△DBC的公共底(A與D不重合),則直線AD必是__________的垂直平分線.4、平行四邊形、菱形、圓、線段、正七邊形、等腰三角形、五角星中,共有_____個中心對稱圖形,共有_____個軸對稱圖形.5、如圖,在中,,以為邊,作,滿足,為上一點,連接,,連接.下列結論中正確的是________(填序號)①;②;③若,則;④.三、解答題(5小題,每小題10分,共計50分)1、如圖,是的角平分線,,交于點E.(1)求證:.(2)當時,請判斷與的大小關系,并說明理由.2、如圖,在平面直角坐標系中,已知線段AB;(1)請在y軸上找到點C,使△ABC的周長最小,畫出△ABC,并寫出點C的坐標;(2)作出△ABC關于y軸對稱的△A'B'C';(3)連接BB',AA'.求四邊形AA'B'B的面積.3、如圖,在正方形網(wǎng)格上有一個.(1)畫出關于直線的對稱圖形(不寫畫法);(2)若網(wǎng)格上的每個小正方形的邊長為1,求的面積.4、如圖1,在中,∠A=120°,∠C=20°,BD平分∠ABC交AC于點D.(1)求證:BD=CD.(2)如圖2,若∠BAC的角平分線AE交BC于點E,求證:AB+BE=AC.(3)如圖3,若∠BAC的外角平分線AE交CB的延長線于點E,則(2)中的結論是否成立?若成立,給出證明,若不成立,寫出正確的結論.5、在邊長為1個單位長度的小正方形網(wǎng)格中,建立平面直角坐標系,已知點O為坐標原點,點C的坐標為(3,1)(1)寫出點A和點B的坐標,并在圖中畫出與△ABC關于x軸對稱的圖形△;(2)寫出點B1的坐標,連接CB1,則線段CB1的長為.(直接寫出得數(shù))-參考答案-一、單選題1、B【解析】【詳解】解:∵PB+PC=BC,PA+PC=BC,∴PA=PB,根據(jù)線段垂直平分線定理的逆定理可得,點P在線段AB的垂直平分線上,故可判斷B選項正確.故選B.2、C【解析】【分析】利用線段垂直平分線的性質得到,,再證明,利用勾股定理即可解決問題.【詳解】解:由作圖方法得垂直平分,∴,,∴,∵,∴,,∴,∴,∴,∴,,∴.故選:.【考點】本題考查了作圖-基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線)方法是解題關鍵,同時還考查了線段垂直平分線的性質.3、C【解析】【分析】根據(jù)等腰直角三角形的性質得到CA=CB,∠CAB=∠CBA=45°,CD=CE,∠E=∠CDE=45°,則可根據(jù)“SAS”證明△ACE≌△BCD,于是可對①進行判斷;利用三角形外角性質得到∠DAB+∠BAC=∠E+∠ACE,加上∠CAB=∠E=45°,則可得對②進行判斷;利用CE=CD和三角形三邊之間的關系可對③進行判斷;根據(jù)△ACE≌△BCD得到∠BDC=∠E=45°,則可對④進行判斷.【詳解】∵△ABC和△ECD都是等腰直角三角形,∴CA=CB,∠CAB=∠CBA=45°,CD=CE,∠E=∠CDE=45°,∵∠ACE+∠ACD=∠ACD+∠BCD,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),所以①正確;∵∠DAC=∠E+∠ACE,即∠DAB+∠BAC=∠E+∠ACE,而∠CAB=∠E=45°,∴∠DAB=∠ACE,所以②正確;∵AE+AC>CE,CE=CD,∴AE+AC>CD,所以③錯誤;∵△ACE≌△BCD,∴∠BDC=∠E=45°,∵∠CDE=45°,∴∠ADB=∠ADC+∠BDC=45°+45°=90°,∴△ADB為直角三角形,所以④正確.故選:C.【考點】本題是考查了全等三角形的判定和性質,等腰直角三角形的性質,直角三角形的判定與性質等知識,熟練掌握全等三角形的判定與性質和等腰直角三角形的性質是解題的關鍵.4、B【解析】【分析】根據(jù)等腰三角形的性質可得∠B=∠C,進而可根據(jù)三角形的內角和定理求出∠A的度數(shù),然后根據(jù)平行線的性質可得∠DEC=∠A,進一步即可求出結果.【詳解】解:∵,,∴∠B=∠C=65°,∴∠A=180°-∠B-∠C=50°,∵DF∥AB,∴∠DEC=∠A=50°,∴∠FEC=130°.故選:B.【考點】本題考查了等腰三角形的性質、平行線的性質和三角形的內角和定理等知識,屬于??碱}型,熟練掌握上述基礎知識是解題的關鍵.5、D【解析】【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、不是軸對稱圖形,是中心對稱圖形,不符合題意;B、不是軸對稱圖形,是中心對稱圖形,不符合題意;C、不是軸對稱圖形,是中心對稱圖形,不符合題意;D、是軸對稱圖形,符合題意.故選D.【考點】本題考查了中心對稱圖形和軸對稱圖形的定義,掌握中心對稱圖形與軸對稱圖形的概念,解答時要注意:判斷軸對稱圖形的關鍵是尋找對稱軸,圖形兩部沿對稱軸疊后可重合;判斷中心對稱圖形是要尋找對稱中心,圖形旋轉180度后與原圖重合.二、填空題1、100°##100度【解析】【分析】延長AD到M,使得DM=AD,連接BM,證△BDM≌△CDA(SAS),得得到BM=AC=BF,∠M=∠DAC=24°,∠C=∠DBM,再證△BFM是等腰三角形,求出∠MBF的度數(shù),即可解決問題.【詳解】解:如圖,延長AD到M,使得DM=AD,連接BM,在△BDM和△CDA中,,∴△BDM≌△CDA(SAS),∴BM=AC=BF,∠M=∠DAC=24°,∠C=∠DBM,∵BF=AC,∴BF=BM,∴∠M=∠BFM=24°,∴∠MBF=180°﹣∠M﹣∠BFM=132°,∵∠EBC=32°,∴∠DBM=∠MBF﹣∠EBC=100°,∴∠C=∠DBM=100°,故答案為:100°.【考點】本題考查全等三角形的判定和性質、等腰三角形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題,屬于中考??碱}型.2、55°【解析】【詳解】,,.3、BC【解析】【分析】根據(jù)題意作圖,再由“到線段兩個端點距離相等的點在線段的垂直平分線上”及“兩點確定一條直線”即可解答.【詳解】如圖,根據(jù)題意得AB=AC,DB=DC,∴點A、D都在BC的垂直平分線上.∵兩點確定一條直線,∴直線AD是BC的垂直平分線.故答案為:BC.【考點】此題考查了線段垂直平分線性質的逆定理及直線的公理,屬基礎題.4、

4

6【解析】【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念,分別分析平行四邊形、菱形、圓、線段、正七邊形、等腰三角形、五角星是否符合即可【詳解】解:中心對稱圖形有:平行四邊形、菱形、圓、線段,共4個;軸對稱圖形有:菱形、圓、線段、正七邊形、等腰三角形、五角星,共6個.故答案為:4,6.【考點】考查了軸對稱圖形和中心對稱圖形的概念,能夠正確判斷特殊圖形的對稱性.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180°后兩部分重合.5、②③④【解析】【分析】通過延長EB至E',使BE=BE',連接,構造出全等三角形,再利用全等三角形的性質依次分析,可得出正確的結論是②③④.【詳解】解:如圖,延長EB至E',使BE=BE',連接;∵∠ABC=90°,∴AB垂直平分EE',∴AE=AE',∴∠1=∠2,∠3=∠5,∵∠1=,∴∠E'AE=2∠1=∠CAD,∴∠E'AC=∠EAD,

又∵AD=AC,∴,∴∠5=∠4,∠ADE=∠ACB(即②正確),∴∠3=∠4;當∠6=∠1時,∠4+∠6=∠3+∠1=90°,此時,∠AME=180°-(∠4+∠6)=90°,當∠6≠∠1時,∠4+∠6≠∠3+∠1,∠4+∠6≠90°,此時,∠AME≠90°,∴①不正確;若CD∥AB,則∠7=∠BAC,∵AD=AC,∴∠7=∠ADC,∵∠CAD+∠7+∠ADC=180°,∴,

∴∠1+∠7=90°,∴∠2+∠7=90°,∴∠2+∠BAC=90°,即∠E'AC=90°,由,∴∠EAD=∠CAE'=90°,E'C=DE,∴AE⊥AD(即③正確),DE=E'B+BE+CE=2BE+CE(即④正確);故答案為:②③④.【考點】本題綜合考查了線段的垂直平分線的判定與性質、全等三角形的判定與性質、等腰三角形的性質、平行線的性質等內容;要求學生能夠根據(jù)已知條件通過作輔助線構造出全等三角形以及能正確運用全等三角形的性質得到角或線段之間的關系,能進行不同的邊或角之間的轉換,考查了學生的綜合分析和數(shù)形結合的能力.三、解答題1、(1)見解析(2)相等,見解析【解析】【分析】(1)利用角平分線的定義和平行線的性質可得結論;

(2)利用平行線的性質可得,

則AD=

AE,從而有CD

=

BE,由(1)

得,,可知BE

=

DE,等量代換即可.(1)證明:∵是的角平分線,∴.∵,∴,∴.(2).理由如下:∵,∴.∵,∴,∴,∴,∴,即.由(1)得,∴,∴.【考點】本題主要考查了平行線的性質,等腰三角形的判定與性質,角平分線的定義等知識,熟練掌握平行與角平分線可推出等腰三角形是解題的關鍵.2、(1)見詳解,點C的坐標為(0,4);(2)見詳解;(3)16【解析】【分析】(1)作B點關于y軸的對稱點連接與y軸的交點即為C點,即可求出點C的坐標;(2)根據(jù)網(wǎng)格畫出△ABC關于y軸對稱的△A'B'C'即可;(3)根據(jù)梯形面積公式即可求四邊形AA'B'B的面積.【詳解】解:(1)所要求作△ABC如圖所示,點C的坐標為(0,4);(2)△A'B'C'即為所求;(3)點A,B,A',B'的坐標分別為:(﹣3,1)、(﹣1,5)、(3,1)、(1,5);∴四邊形AA'B'B的面積為:=(2+6)×4=16.【考點】本題考查了作圖﹣軸對稱變換,解決本題的關鍵是掌握軸對稱的性質.3、(1)見解析;(2)8.5.【解析】【分析】(1)先利用網(wǎng)格確定△ABC關于直線MN對稱的點,再順次連接各點即可得到△ABC關于直線MN的對稱圖形;(2)利用矩形面積減去周圍多余三角形面積即可.【詳解】解:(1)如圖所示:△DEF即為所求;(2)△ABC的面積:4×5-×4×1-×5×3-×4×1=20-2-7.5-2=8.5.【考點】此題主要考查了作圖--軸對稱變換,關鍵是確定組成圖形的關鍵點的對稱點位置.4、(1)見解析(2)見解析(3)不成立,正確的結論是BE-AB=AC,見解析【解析】【分析】(1)根據(jù)三角形內角和可得,利用角平分線得出,由等角對等邊即可證明;(2)過點E作交AC于點F,根據(jù)平行線的性質可得,由等量代換、外角的性質及等角對等邊可得,,依據(jù)全等三角形的判定和性質可得,,,結合圖形,由線段間的數(shù)量關系進行等量代換即可證明;(3)(2)中的結論不成立,正確的結論是.過點A作交BE于點F,由平行線的性質及等量代換可得,根據(jù)等角對等邊得出,由角平分線可得,結合圖形根據(jù)各角之間的數(shù)量關系得出,由等角對等邊可得,結合圖形進行線段間的等量代換即可得出結果.(1)證明:∵,,∴,∵BD平分,∴,∴,∴;(2)證明:如圖:過點E作交AC于點F,∴,∴,∴,,∴,∵AE是的平分線,∴,在和中,,∴,∴,,∴,∴;(3)解:(2)中的結論不成立,正確的結論是.理由如下:如圖,過點A作交BE于點F,∴,∴,∴,∵AE是的外角平分線,∴,∵,∴,∴,∴,∴,∴.【考點】題目主要考查等腰三角形的判定和性質,全等三角形的判定和性質,利用角平分線進行角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論