重難點(diǎn)解析北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末試卷含完整答案詳解(各地真題)_第1頁(yè)
重難點(diǎn)解析北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末試卷含完整答案詳解(各地真題)_第2頁(yè)
重難點(diǎn)解析北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末試卷含完整答案詳解(各地真題)_第3頁(yè)
重難點(diǎn)解析北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末試卷含完整答案詳解(各地真題)_第4頁(yè)
重難點(diǎn)解析北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末試卷含完整答案詳解(各地真題)_第5頁(yè)
已閱讀5頁(yè),還剩30頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計(jì)12分)1、如圖,一農(nóng)戶要建一個(gè)矩形花圃,花圃的一邊利用長(zhǎng)為12m的住房墻,另外三邊用25m長(zhǎng)的籬笆圍成,為方便進(jìn)出,在垂直于住房墻的一邊留一個(gè)1m寬的門(mén),花圃面積為80m2,設(shè)與墻垂直的一邊長(zhǎng)為xm,則可以列出關(guān)于x的方程是()A.x(26﹣2x)=80 B.x(24﹣2x)=80C.(x﹣1)(26﹣2x)=80 D.(x-1)(25﹣2x)=802、如圖,菱形ABCD的兩條對(duì)角線長(zhǎng)分別為AC=6,BD=8,點(diǎn)P是BC邊上的一動(dòng)點(diǎn),則AP的最小值為(

)A.4 B.4.8 C.5 D.5.53、如圖,在平面直角坐標(biāo)系中、四邊形OABC為菱形,O為原點(diǎn),A點(diǎn)坐標(biāo)為(8,0),∠AOC=60°,則對(duì)角線交點(diǎn)E的坐標(biāo)為(

)A.(4,2) B.(2,4) C.(2,6) D.(6,2)4、反比例函數(shù)圖象的兩個(gè)分支分別位于第一、三象限,則一次函數(shù)的圖象大致是(

)A. B.C. D.5、一元二次方程配方后可化為(

)A. B.C. D.6、如圖所示的幾何體的主視圖、左視圖、俯視圖中有兩個(gè)視圖是相同的,則相同的視圖是(

)A. B.C. D.二、多選題(6小題,每小題2分,共計(jì)12分)1、如圖,□ABCD中,E是AD延長(zhǎng)線上一點(diǎn),BE交AC于點(diǎn)F,交DC于點(diǎn)G,則下列結(jié)論中正確的是()A.△ABE∽△DGE B.△CGB∽△DGEC.△BCF∽△EAF D.△ACD∽△GCF2、下列說(shuō)法中,正確的是(

)A.兩角對(duì)應(yīng)相等的兩個(gè)三角形相似B.兩邊對(duì)應(yīng)成比例的兩個(gè)三角形相似C.兩邊對(duì)應(yīng)成比例且?jiàn)A角相等的兩個(gè)三角形相似D.三邊對(duì)應(yīng)成比例的兩個(gè)三角形相似3、如圖,正方形ABCD中,CE平分∠ACB,點(diǎn)F在邊AD上,且AF=BE.連接BF交CE于點(diǎn)G,交AC于點(diǎn)M,點(diǎn)P是線段CE上的動(dòng)點(diǎn),點(diǎn)N是線段CM上的動(dòng)點(diǎn),連接PM,PN.下列四個(gè)結(jié)論一定成立的是(

)A.CE⊥BF B.BE=AM C.AE+FM=AB D.PM+PN≥AC4、下列命題正確的是(

)A.菱形既是中心對(duì)稱(chēng)圖形又是軸對(duì)稱(chēng)圖形B.的算術(shù)平方根是5C.如果一個(gè)多邊形的各個(gè)內(nèi)角都等于108°,則這個(gè)多邊形是正五邊形D.如果方程有實(shí)數(shù)根,則實(shí)數(shù)5、如圖,在△ABC中,點(diǎn)D在邊AC上,下列條件中,不能判斷△BDC與△ABC相似的是(

)A.AB·CB=CA·CD B.AB·CD=BD·BCC.BC2=AC·DC D.BD2=CD·DA6、用配方法解下列方程,配方錯(cuò)誤的是(

)A.化為 B.化為C.化為 D.化為第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,矩形ABCD中,AB=6,BC=8,對(duì)角線BD的垂直平分線EF交AD于點(diǎn)E、交BC于點(diǎn)F,則線段EF的長(zhǎng)為_(kāi)_.2、在20世紀(jì)70年代,我國(guó)著名數(shù)學(xué)家華羅庚教授將黃金分割法作為一種“優(yōu)選法”,在全國(guó)大規(guī)模推廣,取得了很大成果.如圖,利用黃金分割法,所做將矩形窗框分為上下兩部分,其中E為邊的黃金分割點(diǎn),即.已知為2米,則線段的長(zhǎng)為_(kāi)_____米.3、如圖,將矩形的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)無(wú)縫隙重疊的四邊形,若,,則邊的長(zhǎng)是____.4、如圖,在△ABC中,∠A=30°,∠B=90°,D為AB中點(diǎn),E在線段AC上,,則_____.5、已知一元二次方程ax2+bx+c=0(a≠0),下列結(jié)論:①若方程兩根為-1和2,則2a+c=0;②若b>a+c,則方程有兩個(gè)不相等的實(shí)數(shù)根;③若b=2a+3c,則方程有兩個(gè)不相等的實(shí)數(shù)根;④若m是方程的一個(gè)根,則一定有b2-4ac=(2am+b)2成立.其中結(jié)論正確的序號(hào)是__________.6、如圖,點(diǎn)D,E分別在△ABC的邊AC,AB上,△ADE∽△ABC,M,N分別是DE,BC的中點(diǎn),若=,則=__.7、《九章算術(shù)》是中國(guó)古代的數(shù)學(xué)專(zhuān)著,是“算經(jīng)十書(shū)”(漢唐之間出現(xiàn)的十部古算書(shū))中最重要的一種.中有下列問(wèn)題:“今有邑方不知大小,各中開(kāi)門(mén).出北門(mén)八十步有木,出西門(mén)二百四十五步見(jiàn)木.問(wèn)邑方有幾何?”意思是:如圖,點(diǎn)M、點(diǎn)N分別是正方形ABCD的邊AD、AB的中點(diǎn),,,EF過(guò)點(diǎn)A,且步,步,已知每步約40厘米,則正方形的邊長(zhǎng)約為_(kāi)_________米.8、已知方程x2﹣3x+1=0的根是x1和x2,則x1+x2﹣x1x2=___.四、解答題(6小題,每小題10分,共計(jì)60分)1、如圖1,正方形ABCD中,AB=5,點(diǎn)E為BC邊上一動(dòng)點(diǎn),連接AE,以AE為邊,在線段AE右側(cè)作正方形,連接CF、DF.設(shè).(當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),x的值為0),.小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整:(1)通過(guò)取點(diǎn)、畫(huà)圖、測(cè)量、觀察、計(jì)算,得到了x與y1、y2的幾組對(duì)應(yīng)值;x0123455.004.123.614.125.0001.412.834.245.657.07(2)在同一平面直角坐標(biāo)系xOy中,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn),并畫(huà)出函數(shù)y1,y2的圖象;(3)結(jié)合函數(shù)圖象2,解決問(wèn)題:當(dāng)△CDF為等腰三角形時(shí),BE的長(zhǎng)度約為cm.2、解方程(1)2x2﹣4x﹣1=0

(2)3x(x﹣1)=2﹣2x3、端午節(jié)是我國(guó)的傳統(tǒng)節(jié)日,益民食品廠為了解市民對(duì)去年銷(xiāo)量較好的花生粽子、水果粽子、豆沙粽子、紅棗粽子(分別用A、B、C、D表示)這四種不同口味的粽子的喜愛(ài)情況,對(duì)某居民區(qū)的市民進(jìn)行了抽樣調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.(1)本次參加抽樣調(diào)查的居民有多少人?(2)將兩幅統(tǒng)計(jì)圖補(bǔ)充完整;(3)小明喜歡吃花生粽子和紅棗粽子,媽媽為他準(zhǔn)備了四種粽子各一個(gè),請(qǐng)用“列表法”或“畫(huà)樹(shù)形圖”的方法,求出小明同時(shí)選中花生粽子和紅棗粽子的概率.4、用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋海?)

(2)5、如圖,在四邊形ABCD中,AD∥BC,AD=12cm,BC=15cm,點(diǎn)P自點(diǎn)A向D以1cm/s的速度運(yùn)動(dòng),到D點(diǎn)即停止.點(diǎn)Q自點(diǎn)C向B以2cm/s的速度運(yùn)動(dòng),到B點(diǎn)即停止,點(diǎn)P,Q同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(s).(1)用含t的代數(shù)式表示:AP=;DP=;BQ=;CQ=.(2)當(dāng)t為何值時(shí),四邊形APQB是平行四邊形?(3)當(dāng)t為何值時(shí),四邊形PDCQ是平行四邊形?6、用適當(dāng)?shù)姆椒ń夥匠蹋?1).(2).-參考答案-一、單選題1、A【解析】【分析】設(shè)與墻垂直的一邊長(zhǎng)為xm,則與墻平行的一邊長(zhǎng)為(26-2x)m,然后根據(jù)花圃面積為80m2列關(guān)于x的一元一次方程即可.【詳解】解:設(shè)與墻垂直的一邊長(zhǎng)為xm,則與墻平行的一邊長(zhǎng)為(26-2x)m由題意得:x(26-2x)=80.故答案為A.【考點(diǎn)】本題考查了根據(jù)題意列一元二次方程,理解題意、設(shè)出未知數(shù)、表示出相關(guān)的量、找到等量關(guān)系列方程是解答本題的關(guān)鍵.2、B【解析】【分析】由垂線段最短,可得AP⊥BC時(shí),AP有最小值,由菱形的性質(zhì)和勾股定理可求BC的長(zhǎng),由菱形的面積公式可求解.【詳解】如圖,設(shè)AC與BD的交點(diǎn)為O,∵點(diǎn)P是BC邊上的一動(dòng)點(diǎn),∴AP⊥BC時(shí),AP有最小值,∵四邊形ABCD是菱形,∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,∴BC=,∵S菱形ABCD=×AC×BD=BC×AP,∴AP==4.8,故選:B.【考點(diǎn)】本題考查了菱形的性質(zhì),勾股定理,確定當(dāng)AP⊥BC時(shí),AP有最小值是本題關(guān)鍵.3、D【解析】【分析】過(guò)點(diǎn)E作EF⊥x軸于點(diǎn)F,由直角三角形的性質(zhì)求出EF長(zhǎng)和OF長(zhǎng)即可.【詳解】解:過(guò)點(diǎn)E作EF⊥x軸于點(diǎn)F,∵四邊形OABC為菱形,∠AOC=60°,∴∠AOE=∠AOC=30°,OB⊥AC,∠FAE=60°,∴∠AEF=30°∵A(8,0),∴AO=8,∴AE=AO=×8=4,∴AF=AE=2,,∴OF=AO?AF=8?2=6,∴.故選:D【考點(diǎn)】本題考查了菱形的性質(zhì)、勾股定理及含30°直角三角形的性質(zhì),正確作出輔助線是解題的關(guān)鍵.4、D【解析】【分析】根據(jù)題意可得,進(jìn)而根據(jù)一次函數(shù)圖像的性質(zhì)可得的圖象的大致情況.【詳解】反比例函數(shù)圖象的兩個(gè)分支分別位于第一、三象限,∴一次函數(shù)的圖象與y軸交于負(fù)半軸,且經(jīng)過(guò)第一、三、四象限.觀察選項(xiàng)只有D選項(xiàng)符合.故選D【考點(diǎn)】本題考查了反比例函數(shù)的性質(zhì),一次函數(shù)圖像的性質(zhì),根據(jù)已知求得是解題的關(guān)鍵.5、B【解析】【分析】根據(jù)題意直接對(duì)一元二次方程配方,然后把常數(shù)項(xiàng)移到等號(hào)右邊即可.【詳解】解:根據(jù)題意,把一元二次方程配方得:,即,∴化成的形式為.故選:B.【考點(diǎn)】本題考查配方法解一元二次方程,注意掌握配方法的一般步驟:把常數(shù)項(xiàng)移到等號(hào)的右邊;把二次項(xiàng)的系數(shù)化為1;等式兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.選擇用配方法解一元二次方程時(shí),最好使方程的二次項(xiàng)的系數(shù)為1,一次項(xiàng)的系數(shù)是2的倍數(shù).6、B【解析】【分析】判斷出組合體的左視圖、主視圖及俯視圖,即可作出判斷.【詳解】解:幾何體的左視圖和主視圖是相同的,故選:B.【考點(diǎn)】本題考查了簡(jiǎn)單組合體的三視圖,屬于基礎(chǔ)題,注意理解三視圖觀察的方向.二、多選題1、ABC【解析】【分析】本題中可利用平行四邊形ABCD中兩對(duì)邊平行的特殊條件來(lái)進(jìn)行求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠EDG=∠EAB,∵∠E=∠E,∴△ABE∽△DGE,故選項(xiàng)A正確;∵AE∥BC,∴∠EDC=∠BCG,∠E=∠CBG,∴△CGB∽△DGE,故選項(xiàng)B正確;∵AE∥BC,∴∠E=∠FBC,∠EAF=∠BCF,∴△BCF∽△EAF,故選項(xiàng)C正確;無(wú)法證得△ACD∽△GCF,故選:ABC.【考點(diǎn)】本題考查了相似三角形的判定定理,平行四邊形的性質(zhì),正確的識(shí)別圖形是解題的關(guān)鍵.2、ACD【解析】【分析】根據(jù)相似三角形的判定定理判斷即可.【詳解】A

“兩角對(duì)應(yīng)相等的兩個(gè)三角形相似”是正確的;B

“兩邊對(duì)應(yīng)成比例的兩個(gè)三角形相似”是錯(cuò)誤的,還需添上條件“且?jiàn)A角相等”才成立;C

“兩邊對(duì)應(yīng)成比例且?jiàn)A角相等的兩個(gè)三角形相似”是正確的;D

“三邊對(duì)應(yīng)成比例的兩個(gè)三角形相似”是正確的故選:ACD【考點(diǎn)】本題考查了相似三角形的判定定理,做題的關(guān)鍵是熟練掌握相似三角形的判定定理.3、ABD【解析】【分析】由SAS可證△BAF≌△CBE,進(jìn)而可證EG⊥BG,即CE⊥BF,故A正確;根據(jù)ASA可證△BCG≌△MCG,知∠CBG=∠CMG,因?yàn)椤螩BG=∠AFM,∠AMF=∠CMG,可得∠AFM=∠AMF,即AM=AF,可證BE=AM,故B正確;因AB=AE+BE=AE+AM,故C不正確;當(dāng)PN⊥MC時(shí),PM+PN=BP+PN=BN最短,此時(shí)BN為△ABC底邊AC上的高,則BN的長(zhǎng)度為PM+PN的最小值,根據(jù)正方形的性質(zhì)知,BN==BD=AC,因此PM+PN≥AC,故D正確.【詳解】解:∵四邊形ABCD是正方形∴AB=BC,∠BAF=∠CBE=90°在△BAF和△CBE中∴△BAF≌△CBE(SAS)∴∠BAF=∠ECB∵∠CBE=90°∴∠BEC+∠BCE=90°∴∠BEC+∠FBA=90°∴∠BGE=180°-(∠BEC+∠FBA)=90°∴EG⊥BG,即CE⊥BF,故A正確;∵CE平分∠ACB∴∠BCE=∠MCG∵CE⊥BF∴∠MGC=∠BGC=90°在△BCG和△MCG中∴△BCG≌△MCG(ASA)∴∠CBG=∠CMG∵正方形ABCD∴AD∥BC∴∠CBG=∠AFM∵∠AMF=∠CMG∴∠AFM=∠AMF∴AM=AF∵AF=BE∴BE=AM,故B正確;∵AB=AE+BE,BE=AM∴AE+AM=AB,故C不正確;連接BP,如圖,∵△BCG≌△MVG∴BG=GM∵CE⊥BF∴CG垂直平分BM∴MP=BP當(dāng)PN⊥MC時(shí),PM+PN=BP+PN=BN最短,此時(shí)BN為△ABC底邊AC上的高,則BN的長(zhǎng)度為PM+PN的最小值,根據(jù)正方形的性質(zhì)知,BN==BD=AC∴PM+PN≥AC,故D正確綜上所述,一定成立的是ABD,故選:ABD.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),正方形的性質(zhì),線段的垂直平分線,解題的關(guān)鍵是熟練掌握全等三角形的判定與性質(zhì).4、AD【解析】【分析】利用菱形的對(duì)稱(chēng)性、算術(shù)平方根的定義、多邊形的內(nèi)角和、一元二次方程根的判別式等知識(shí)分別判斷后即可確定正確的選項(xiàng).【詳解】解:A、菱形既是中心對(duì)稱(chēng)圖形又是軸對(duì)稱(chēng)圖形,故命題正確,符合題意;B、的算術(shù)平方根是,故命題錯(cuò)誤,不符合題意;C、若一個(gè)多邊形的各內(nèi)角都等于108°,各邊也相等,則它是正五邊形,故命題錯(cuò)誤,不符合題意;D、對(duì)于方程,當(dāng)a=0時(shí),方程,變?yōu)?x+1=0,有實(shí)數(shù)根,當(dāng)a≠0時(shí),時(shí),即,方程有實(shí)數(shù)根,綜上所述,方程有實(shí)數(shù)根,則實(shí)數(shù),故命題正確,符合題意.故選:AD.【考點(diǎn)】考查了命題與定理的知識(shí),解題的關(guān)鍵是了解算術(shù)平方根的定義、菱形的對(duì)稱(chēng)性、多邊形的內(nèi)角和、一元二次方程根的判別式等知識(shí),難度不大.5、ABD【解析】【分析】根據(jù)三角形相似的判斷方法逐個(gè)判斷即可.【詳解】解:A、AB·CB=CA·CD,不能判定△BDC∽△ABC,符合題意;B、AB·CD=BD·BC,不能判定△BDC∽△ABC,符合題意;C、BC2=AC·DC,∠BCD=∠ACB,∴△BDC∽△ABC,故選項(xiàng)不符合題意;D、BD2=CD·DA,不能判定△BDC與△ABC,符合題意;故選:ABD.【考點(diǎn)】此題考查了三角形相似的判定方法,解題的關(guān)鍵是熟練掌握三角形相似的判定方法.6、BD【解析】【分析】根據(jù)配方法的一般步驟:(1)把常數(shù)項(xiàng)移到等號(hào)的右邊;(2)把二次項(xiàng)的系數(shù)化為1,(3)等式兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方即可得到結(jié)論.【詳解】A.化為,正確,不符合題意;B.化為,錯(cuò)誤,符合題意;C.化為,正確,不符合題意;D.化為,錯(cuò)誤,符合題意.故選:BD.【考點(diǎn)】此題考查了配方法解一元二次方程,屬于基礎(chǔ)題,熟練掌握配方法的一般步驟是解題關(guān)鍵.三、填空題1、【解析】【分析】根據(jù)矩形的性質(zhì)和勾股定理求出BD,證明△BOF∽△BCD,根據(jù)相似三角形的性質(zhì)得到比例式,求出EF即可.【詳解】解:如下圖,∵四邊形ABCD是矩形,∴∠A=90°,又AB=6,AD=BC=8,∴BD10,∵EF是BD的垂直平分線,∴OB=OD=5,∠BOF=90°,又∠C=90°,∴△BOF∽△BCD,∴,∴,解得,OF,∵四邊形ABCD是矩形,∴ADBC,∠A=90°,∴∠EDO=∠FBO,∵EF是BD的垂直平分線,∴BO=DO,EF⊥BD,在△DEO和△BFO中,,∴△DEO≌△BFO(ASA),∴OE=OF,∴EF=2OF,故答案為:.【考點(diǎn)】本題考查的是矩形的性質(zhì)、線段垂直平分線的性質(zhì)以及勾股定理的應(yīng)用,解題的關(guān)鍵是掌握矩形的四個(gè)角是直角、對(duì)邊相等以及線段垂直平分線的定義.2、##【解析】【分析】根據(jù)點(diǎn)E是AB的黃金分割點(diǎn),可得,代入數(shù)值得出答案.【詳解】∵點(diǎn)E是AB的黃金分割點(diǎn),∴.∵AB=2米,∴米.故答案為:().【考點(diǎn)】本題主要考查了黃金分割的應(yīng)用,掌握黃金比是解題的關(guān)鍵.3、【解析】【分析】由折疊的性質(zhì)和矩形的性質(zhì)可得∠HEF=90°,EA=EB=3,證明△HNG≌△FME,求出HF,設(shè)AH=x,在△AEH,△BEF和△EFH中,利用勾股定理列出方程,求出x,即可得到EH.【詳解】解:∵四邊形ABCD是矩形,∴∠A=∠B=∠D=90°,由折疊可知:△EAH≌△EMH,△HNG≌△HDG,△FBE≌△FME,∴EA=EM,AH=MH,HD=HN,EB=EM,F(xiàn)B=FM,∠AEH=∠MEH,∠BEF=∠MEF,∠BME=∠B=90°,∠HNG=∠D=90°,∴EA=EB=AB=3,∵∠AEH+∠MEH+∠BEF+∠MEF=180°,∴2∠MEH+2∠MEF=180°,∴∠HEF=90°,同理可知:∠EHG=∠EFG=∠HGF=90°,∴四邊形EHGF是矩形,∴HG∥FE,HG=FE,∴∠GHN=∠EFM,在△HNG和△FME中,,∴△HNG≌△FME(AAS),∴HN=FM,∴HD=FM,∴HF=HM+FM=AH+HD=AD=10,設(shè)AH=x,則HD=FM=FB=10-x,∵,,,∴,即,解得:x=1或x=9(舍),∴AH=1,∴,故答案為:.【考點(diǎn)】本題考查了翻折變換,矩形的性質(zhì),勾股定理,全等三角形的判定和性質(zhì),利用勾股定理列出方程是本題的關(guān)鍵.4、或【解析】【分析】由題意可求出,取AC中點(diǎn)E1,連接DE1,則DE1是△ABC的中位線,滿足,進(jìn)而可求此時(shí),然后在AC上取一點(diǎn)E2,使得DE1=DE2,則,證明△DE1E2是等邊三角形,求出E1E2=,即可得到,問(wèn)題得解.【詳解】解:∵D為AB中點(diǎn),∴,即,取AC中點(diǎn)E1,連接DE1,則DE1是△ABC的中位線,此時(shí)DE1∥BC,,∴,在AC上取一點(diǎn)E2,使得DE1=DE2,則,∵∠A=30°,∠B=90°,∴∠C=60°,BC=,∵DE1∥BC,∴∠DE1E2=60°,∴△DE1E2是等邊三角形,∴DE1=DE2=E1E2=,∴E1E2=,∵,∴,即,綜上,的值為:或,故答案為:或.【考點(diǎn)】本題考查了三角形中位線的性質(zhì),平行線分線段成比例,等邊三角形的判定和性質(zhì)以及含30°角的直角三角形的性質(zhì)等,根據(jù)進(jìn)行分情況求解是解題的關(guān)鍵.5、①③④【解析】【分析】利用根與系數(shù)的關(guān)系判斷①;由Δ=b2-4ac判斷②;由判別式可判斷③;將x=m代入方程得am2=-(bm+c),再代入=(2am+b)2變形可判斷④.【詳解】解:若方程兩根為-1和2,則=-1×2=-2,即c=-2a,2a+c=2a-2a=0,故①正確;由b>a+c不能判斷Δ=b2-4ac值的大小情況,故②錯(cuò)誤;若b=2a+3c,則Δ=b2-4ac=4(a+c)2+5c2>0,一元二次方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根,故③正確.若m是方程ax2+bx+c=0的一個(gè)根,所以有am2+bm+c=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[-(bm+c)]+4abm+b2=4abm-4abm-4ac+b2=b2-4ac.故④正確;故答案為:①③④.【考點(diǎn)】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系及根的判別式Δ=b2-4ac:當(dāng)Δ>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)Δ=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)Δ<0,方程沒(méi)有實(shí)數(shù)根.6、【解析】【分析】根據(jù)相似三角形對(duì)應(yīng)中線的比等于相似比求出,根據(jù)相似三角形面積的比等于相似比的平方解答即可.【詳解】解:∵M(jìn),N分別是DE,BC的中點(diǎn),∴AM、AN分別為△ADE、△ABC的中線,∵△ADE∽△ABC,∴==,∴=()2=,故答案為:.【考點(diǎn)】本題考查了相似三角形的性質(zhì),掌握相似三角形面積的比等于相似比的平方、相似三角形對(duì)應(yīng)中線的比等于相似比是解題的關(guān)鍵.7、112【解析】【分析】根據(jù)題意,可知Rt△AEN∽R(shí)t△FAN,從而可以得到對(duì)應(yīng)邊的比相等,從而可以求得正方形的邊長(zhǎng).【詳解】解:∵點(diǎn)M、點(diǎn)N分別是正方形ABCD的邊AD、AB的中點(diǎn),∴,∴AM=AN,由題意可得,∠ANF=∠EMA=90°,∠NAF+∠AFN=∠NAF+∠EAM=90°,∴∠AFN=∠EAM,∴Rt△AEM∽R(shí)t△FAN,∴,∵AM=AN,∴,解得:AM=140,∴AD=2AM=280(步),∴(米)故答案為:112.【考點(diǎn)】本題考查相似三角形的應(yīng)用、數(shù)學(xué)常識(shí)、正方形的性質(zhì),解答本題的關(guān)鍵是明確題意.利用相似三角形的性質(zhì)和數(shù)形結(jié)合的思想解答.8、2【解析】【分析】根據(jù)根與系數(shù)的關(guān)系可得出x1+x2=3、x1x2=1,將其代入x1+x2﹣x1x2中即可求出結(jié)論.【詳解】解:∵方程x2﹣3x+1=0的兩個(gè)實(shí)數(shù)根為x1、x2,∴x1+x2=3、x1x2=1,∴x1+x2﹣x1x2=3﹣1=2,故答案為:2.【考點(diǎn)】本題考查了根與系數(shù)的關(guān)系,一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系為:x1+x2=﹣,x1?x2=.四、解答題1、(1)見(jiàn)解析;(2)見(jiàn)解析;(3)2.59.【解析】【分析】(1)畫(huà)圖、測(cè)量可得;(2)依據(jù)表中的數(shù)據(jù),描點(diǎn)、連線即可得;(3)由題意得出△CDF是等腰三角形時(shí)BE的長(zhǎng)度即為y1與y2交點(diǎn)的橫坐標(biāo),據(jù)此可得答案.【詳解】(1)補(bǔ)全表格如下:x012345y15.04.123.613.614.125.00y201.412.834.245.657.07(2)函數(shù)圖象如下:(3)結(jié)合函數(shù)圖象2,解決問(wèn)題:當(dāng)△CDF為等腰三角形時(shí),BE的長(zhǎng)度約為2.5906,故答案為2.59.【考點(diǎn)】本題是四邊形的綜合問(wèn)題,解題的關(guān)鍵是掌握函數(shù)思想的運(yùn)用及函數(shù)圖象的畫(huà)法、數(shù)形結(jié)合思想的運(yùn)用.2、(1)x1=1+,x2=1-;(2),.【解析】【分析】(1)用配方法求解即可;(2)先移項(xiàng),然后用因式分解法求解即可.【詳解】(1)2x2﹣4x﹣1=0,移項(xiàng)得:2x2﹣4x=1,二次項(xiàng)系數(shù)化為1得:,配方得:,(x﹣1)2=,即x﹣1=±,故原方程的解是:x1=1+,x2=1-;(2)3x(x﹣1)=2﹣2x,移項(xiàng)得:3x(x﹣1)+2x﹣2=0,即3x(x﹣1)+2(x﹣1)=0,分解因式得:(x﹣1)(3x+2)=0,即3x+2=0,x﹣1=0,解得:,.【考點(diǎn)】本題考查了一元二次方程的解法,常用的方法有直接開(kāi)平方法、配方法、因式分解法、求根公式法,靈活選擇合適的方法是解答本題的關(guān)鍵.3、(1)本次參加抽樣調(diào)查的居民有600人;(2)見(jiàn)解析;(3).【解析】【分析】(1)用喜歡B類(lèi)的人數(shù)除以它所占的百分比得到調(diào)查的總?cè)藬?shù);(2)先計(jì)算出喜歡C類(lèi)的人數(shù),再計(jì)算出喜歡A類(lèi)的人數(shù)的百分比和喜歡C類(lèi)的人數(shù)的百分比,然后補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;(3)畫(huà)樹(shù)狀圖展示所有12種等可能的結(jié)果數(shù),找出小明同時(shí)選中花生粽子和紅棗粽子的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】(1)60÷10%=600,所以本次參加抽樣調(diào)查的居民有600人;(2)喜歡C類(lèi)的人數(shù)為600﹣180﹣60﹣240=120(人),喜歡A類(lèi)的人數(shù)的百分比為×100%=30%;喜歡C類(lèi)的人數(shù)的百分比為×100%=20%;兩幅統(tǒng)計(jì)圖補(bǔ)充為:(3)畫(huà)樹(shù)狀圖為:

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論