綜合解析人教版8年級數(shù)學(xué)下冊《平行四邊形》定向測評試題(解析卷)_第1頁
綜合解析人教版8年級數(shù)學(xué)下冊《平行四邊形》定向測評試題(解析卷)_第2頁
綜合解析人教版8年級數(shù)學(xué)下冊《平行四邊形》定向測評試題(解析卷)_第3頁
綜合解析人教版8年級數(shù)學(xué)下冊《平行四邊形》定向測評試題(解析卷)_第4頁
綜合解析人教版8年級數(shù)學(xué)下冊《平行四邊形》定向測評試題(解析卷)_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)下冊《平行四邊形》定向測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖所示,公路AC、BC互相垂直,點M為公路AB的中點,為測量湖泊兩側(cè)C、M兩點間的距離,若測得AB的長為6km,則M、C兩點間的距離為()A.2.5km B.4.5km C.5km D.3km2、已知菱形的邊長為6,一個內(nèi)角為60°,則菱形較長的對角線長是()A. B. C.3 D.63、如圖所示,在矩形ABCD中,已知AE⊥BD于E,∠DBC=30°,BE=1cm,則AE的長為()A.3cm B.2cm C.2cm D.cm4、在平行四邊形ABCD中,∠A=30°,那么∠B與∠A的度數(shù)之比為()A.4:1 B.5:1 C.6:1 D.7:15、如圖,矩形ABCD的對角線AC和BD相交于點O,若∠AOD=120°,AC=16,則AB的長為()A.16 B.12 C.8 D.4第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在中,,點、、分別是三邊的中點,且,則的長度是__________.2、能使平行四邊形ABCD為正方形的條件是___________(填上一個符合題目要求的條件即可).3、如圖,在?ABCD中,點E是對角線AC上一點,過點E作AC的垂線,交邊AD于點P,交邊BC于點Q,連接PC、AQ,若AC=6,PQ=4,則PC+AQ的最小值為________________.4、正方形的一條對角線長為4,則這個正方形面積是_________.5、如圖,在矩形ABCD中,對角線AC,BD相交于O,EF過點O分別交AB,CD于E,F(xiàn),已知AB=8cm,AD=5cm,那么圖中陰影部分面積為_____cm2.三、解答題(5小題,每小題10分,共計50分)1、在菱形ABCD中,∠ABC=60°,P是直線BD上一動點,以AP為邊向右側(cè)作等邊APE(A,P,E按逆時針排列),點E的位置隨點P的位置變化而變化.(1)如圖1,當(dāng)點P在線段BD上,且點E在菱形ABCD內(nèi)部或邊上時,連接CE,則BP與CE的數(shù)量關(guān)系是,BC與CE的位置關(guān)系是;(2)如圖2,當(dāng)點P在線段BD上,且點E在菱形ABCD外部時,(1)中的結(jié)論是否還成立?若成立,請予以證明;若不成立,請說明理由;(3)當(dāng)點P在直線BD上時,其他條件不變,連接BE.若AB=2,BE=2,請直接寫出APE的面積.2、如圖,的對角線與相交于點O,過點B作BPAC,過點C作CPBD,與相交于點P.

(1)試判斷四邊形的形狀,并說明理由;(2)若將改為矩形,且,其他條件不變,求四邊形的面積;(3)要得到矩形,應(yīng)滿足的條件是_________(填上一個即可).3、如圖,△AOB是等腰直角三角形.(1)若A(﹣4,1),求點B的坐標(biāo);(2)AN⊥y軸,垂足為N,BM⊥y軸,垂足為點M,點P是AB的中點,連PM,求∠PMO度數(shù);(3)在(2)的條件下,點Q是ON的中點,連PQ,求證:PQ⊥AM.

4、如圖,?ABCD的對角線AC,BD相交于點O,點E,點F在線段BD上,且DE=BF.求證:AE∥CF.5、如圖,在平行四邊形中,連接.(1)請用尺規(guī)完成基本作圖:在上方作,使,射線交于點F,在線段上截取,使.(2)連接,求證:四邊形是菱形.-參考答案-一、單選題1、D【解析】【詳解】根據(jù)直角三角形斜邊上的中線性質(zhì)得出CM=AB,即可求出CM.【解答】解:∵公路AC,BC互相垂直,∴∠ACB=90°,∵M(jìn)為AB的中點,∴CM=AB,∵AB=6km,∴CM=3km,即M,C兩點間的距離為3km,故選:D.【點睛】本題考查了直角三角形的性質(zhì),解題關(guān)鍵是掌握直角三角形斜邊上的中線的性質(zhì):直角三角形斜邊上的中線等于斜邊的一半.2、B【解析】【分析】根據(jù)一個內(nèi)角為60°可以判斷較短的對角線與兩鄰邊構(gòu)成等邊三角形,求出較長的對角線的一半,再乘以2即可得解.【詳解】解:如圖,菱形ABCD,∠ABC=60°,∴AB=BC,AC⊥BD,OB=OD,∴△ABC是等邊三角形,菱形的邊長為6,∴AC=6,∴AO=AC=3,在Rt△AOB中,BO===3,∴菱形較長的對角線長BD是:2×3=6.故選:B.【點睛】本題考查了菱形的性質(zhì)和勾股定理,等邊三角形的判定,解題關(guān)鍵是熟練運用菱形的性質(zhì)和等邊三角形的判定求出對角線長.3、D【解析】【分析】根據(jù)矩形和直角三角形的性質(zhì)求出∠BAE=30°,再根據(jù)直角三角形的性質(zhì)計算即可.【詳解】解:∵四邊形ABCD是矩形,∴∠BAD=90°,∠BDA=∠DBC=30°,∵AE⊥BD,∴∠DAE=60°,∴∠BAE=30°,在Rt△ABE中,∠BAE=30°,BE=1cm,∴AB=2cm,∴AE=(cm),故選:D.【點睛】本題考查了矩形的性質(zhì),含30度角的直角三角形的性質(zhì),熟記各圖形的性質(zhì)并準(zhǔn)確識圖是解題的關(guān)鍵.4、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)先求出∠B的度數(shù),即可得到答案.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠B=180°-∠A=150°,∴∠B:∠A=5:1,故選B.【點睛】本題主要考查了平行四邊形的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握平行四邊形鄰角互補.5、C【解析】【分析】由題意可得AO=BO=CO=DO=8,可證△ABO是等邊三角形,可得AB=8.【詳解】解:∵四邊形ABCD是矩形,∴AC=2AO=2CO,BD=2BO=2DO,AC=BD=16,∴OA=OB=8,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等邊三角形,∴AB=AO=BO=8,故選:C.【點睛】本題考查了矩形的性質(zhì),等邊三角形的性質(zhì)和判定,熟練掌握矩形的性質(zhì)是本題的關(guān)鍵.二、填空題1、【解析】【分析】根據(jù)中位線定理可得的長度,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求出的長度.【詳解】解:∵點、、分別是三邊的中點,且∴∵∴故答案為:【點睛】本題主要考查了三角形的中位線定理和直角三角形斜邊上的中線,熟練掌握三角形的中位線定理和直角三角形斜邊上的中線是解答本題的關(guān)鍵.2、AC=BD且AC⊥BD(答案不唯一)【解析】【分析】根據(jù)正方形的判定定理,即可求解.【詳解】解:當(dāng)AC=BD時,平行四邊形ABCD為菱形,又由AC⊥BD,可得菱形ABCD為正方形,所以當(dāng)AC=BD且AC⊥BD時,平行四邊形ABCD為正方形.故答案為:AC=BD且AC⊥BD(答案不唯一)【點睛】本題主要考查了正方形的判定,熟練掌握正方形的判定定理是解題的關(guān)鍵.3、【解析】【分析】利用平行四邊形的知識,將的最小值轉(zhuǎn)化為的最小值,再利用勾股定理求出MC的長度,即可求解;【詳解】過點A作且,連接MP,∴四邊形是平行四邊形,∴,將的最小值轉(zhuǎn)化為的最小值,當(dāng)M、P、C三點共線時,的最小,∵,,∴,在中,;故答案是:.【點睛】本題主要考查了平行線的判定與性質(zhì),勾股定理,準(zhǔn)確計算是解題的關(guān)鍵.4、8【解析】【分析】正方形邊長相等設(shè)為,對角線長已知,利用勾股定理求解邊長的平方,即為正方形的面積.【詳解】解:設(shè)邊長為,對角線為故答案為:.【點睛】本題考察了正方形的性質(zhì)以及勾股定理.解題的關(guān)鍵在于求解正方形的邊長.5、10【解析】【分析】利用矩形性質(zhì),求證,將陰影部分的面積轉(zhuǎn)為的面積,最后利用中線平分三角形的面積,求出的面積,即可得到陰影部分的面積.【詳解】解:四邊形為矩形,,,,,在與中,,陰影部分的面積最后轉(zhuǎn)化為了的面積,中,,平分,陰影部分的面積:,故答案為:10.【點睛】本題主要是考查了矩形的性質(zhì)以全等三角形的判定與性質(zhì)以及中線平分三角形面積,熟練利用矩形性質(zhì),證明三角形全等,將陰影部分面積轉(zhuǎn)化為其他圖形的面積,這是解決本題的關(guān)鍵.三、解答題1、(1)BP=CE,CE⊥BC;(2)仍然成立,見解析;(3)31【分析】(1)連接AC,根據(jù)菱形的性質(zhì)和等邊三角形的性質(zhì)證明△BAP≌△CAE即可證得結(jié)論;(2)(1)中的結(jié)論成立,用(1)中的方法證明△BAP≌△CAE即可;(3)分兩種情形:當(dāng)點P在BD的延長線上時或點P在線段DB的延長線上時,連接AC交BD于點O,由∠BCE=90°,根據(jù)勾股定理求出CE的長即得到BP的長,再求AO、PO、PD的長及等邊三角形APE的邊長可得結(jié)論.【詳解】解:(1)如圖1,連接AC,延長CE交AD于點H,∵四邊形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等邊三角形,∴AB=AC,∠BAC=60°;∵△APE是等邊三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE=60°﹣∠PAC,∴△BAP≌△CAE(SAS),∴BP=CE;∵四邊形ABCD是菱形,∴∠ABP=∠ABC=30°,∴∠ABP=∠ACE=30°,∵∠ACB=60°,∴∠BCE=60°+30°=90°,∴CE⊥BC;故答案為:BP=CE,CE⊥BC;(2)(1)中的結(jié)論:BP=CE,CE⊥AD仍然成立,理由如下:如圖2中,連接AC,設(shè)CE與AD交于H,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等邊三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等邊三角形,∴AP=AE,∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE(SAS),∴BP=CE,∠ACE=∠ABD=30°,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,∴CE⊥AD;∴(1)中的結(jié)論:BP=CE,CE⊥AD仍然成立;(3)如圖3中,當(dāng)點P在BD的延長線上時,連接AC交BD于點O,連接CE,BE,作EF⊥AP于F,∵四邊形ABCD是菱形,∴AC⊥BDBD平分∠ABC,∵∠ABC=60°,AB=2,∴∠ABO=30°,∴AO=AB=,OB=AO=3,∴BD=6,由(2)知CE⊥AD,∵AD∥BC,∴CE⊥BC,∵BE=2,BC=AB=2,∴CE==8,由(2)知BP=CE=8,∴DP=2,∴OP=5,∴AP===2,∵△APE是等邊三角形,∴S△AEP=×(2)2=7,如圖4中,當(dāng)點P在DB的延長線上時,同法可得AP===2,∴S△AEP=×(2)2=31,【點睛】此題是四邊形的綜合題,重點考查菱形的性質(zhì)、等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理等知識點,解題的關(guān)鍵是正確地作出解題所需要的輔助線,將菱形的性質(zhì)與三角形全等的條件聯(lián)系起來,此題難度較大,屬于考試壓軸題.2、(1)平行四邊形,理由見解析;(2)四邊形的面積為24;(3)AB=BC或AC⊥BD等(答案不唯一)【分析】(1)利用平行四邊形的判定:兩組對邊分別平行的四邊形是平行四邊形,即可證明.(2)利用矩形的性質(zhì),得到對角線互相平分,進(jìn)而證明四邊形是菱形,分別求出菱形的對角線長度,利用對角線乘積的一半,求解面積即可.(3)添加的條件只要可以證明即可得到矩形.【詳解】解:(1)四邊形BPCO是平行四邊形,

∵BP∥AC,CP∥BD,∴四邊形BPCO是平行四邊形.(2)連接OP.∵四邊形ABCD是矩形,∴OB=BD,OC=AC,AC=BD,∠ABC=90°,∴OB=OC.又四邊形BPCO是平行四邊形,∴□BPCO是菱形.

∴OP⊥BC.又∵AB⊥BC,∴OP∥AB.又∵AC∥BP,四邊形是平行四邊形,∴OP=AB=6.∴S菱形BPCO=.(3)AB=BC或AC⊥BD等(答案不唯一).當(dāng)AB=BC時,為菱形,此時有:,利用含有的平行四邊形為矩形,即可得到矩形,當(dāng)AC⊥BD時,利用含有的平行四邊形為矩形,即可得到矩形.【點睛】本題主要是考查了平行四邊形、矩形和菱形的判定和性質(zhì),熟練掌握特殊四邊形的判定和性質(zhì),是求解該類問題的關(guān)鍵.3、(1)(1,4);(2)45°;(3)見解析

【分析】(1)過點A作AE⊥x軸于E,過點B作BF⊥x軸于F,證明△OAE≌△BOF得到OF=AE,BF=OE,再由點A的坐標(biāo)為(-4,1),得到OF=AE=1,BF=OE=4,則點B的坐標(biāo)為(1,4);(2)延長MP與AN交于H,證明△APH≌△BPM得到AH=BM,再由A點坐標(biāo)為(-4,1),B點坐標(biāo)為(1,4),得到AN=4,OM=4,BM=1,ON=1,則HN=AN-AH=AN-BM=3,MN=OM-ON=3,瑞出HN=MN,即可得到∠NHM=∠NMH=45°,即∠PMO=45°;(3)連接OP,AM,取BM中點G,連接GP,則GP是△ABM的中位線,AM∥GP,證明△PQO≌△PGB得到∠OPQ=∠BPG,再由∠OPQ+∠BPQ=90°,得到∠BPG+∠BPQ=90°,即∠GPQ=90°,則PQ⊥PG,即PG⊥AM;【詳解】解:(1)如圖所示,過點A作AE⊥x軸于E,過點B作BF⊥x軸于F,∴∠AEO=∠OFB=90°,∴∠AOE+∠OAE=90°,又∵∠AOB=90°,∴∠AOE+∠BOF=90°,∴∠OAE=∠BOF,∵AO=OB,∴△OAE≌△BOF(AAS),∴OF=AE,BF=OE,∵點A的坐標(biāo)為(-4,1),∴OF=AE=1,BF=OE=4,∴點B的坐標(biāo)為(1,4);(2)如圖所示,延長MP與AN交于H,∵AH⊥y軸,BM⊥y軸,∴BM∥AN,∴∠MBP=∠HAP,∠AHP=∠BMP,∵點P是AB的中點,∴AP=BP,∴△APH≌△BPM(AAS),∴AH=BM,∵A點坐標(biāo)為(-4,1),B點坐標(biāo)為(1,4),∴AN=4,OM=4,BM=1,ON=1,∴HN=AN-AH=AN-BM=3,MN=OM-ON=3,∴HN=MN,∴∠NHM=∠NMH=45°,即∠PMO=45°;(3)如圖所示,連接OP,AM,取BM中點G,連接GP,∴GP是△ABM的中位線,∴AM∥GP,∵Q是ON的中點,G是BM的中點,ON=BM=1,∴,∵P是AB中點,△AOB是等腰直角三角形,∠AOB=90°,∴,∠OAB=∠OBA=45°,∠OPB=90°∴∠PAO=∠POA=45°,∴∠POB=45°,∵∠NAO+∠NOA=90°,∠NOA+∠BON=90°,∴∠NAO=∠BON,∵∠OAB=∠POB=45°,∴∠BAN+∠N

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論