重難點解析人教版8年級數(shù)學下冊《平行四邊形》定向攻克試題(詳解版)_第1頁
重難點解析人教版8年級數(shù)學下冊《平行四邊形》定向攻克試題(詳解版)_第2頁
重難點解析人教版8年級數(shù)學下冊《平行四邊形》定向攻克試題(詳解版)_第3頁
重難點解析人教版8年級數(shù)學下冊《平行四邊形》定向攻克試題(詳解版)_第4頁
重難點解析人教版8年級數(shù)學下冊《平行四邊形》定向攻克試題(詳解版)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數(shù)學下冊《平行四邊形》定向攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、在中,AC與BD相交于點O,要使四邊形ABCD是菱形,還需添加一個條件,這個條件可以是()A.AO=CO B.AO=BO C.AO⊥BO D.AB⊥BC2、勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學定理之一,是數(shù)形結合的重要紐帶.數(shù)學家歐幾里得利用如圖驗證了勾股定理:以直角三角形ABC的三條邊為邊長向外作正方形ACHI,正方形ABED,正方形BCGF,連接BI,CD,過點C作CJ⊥DE于點J,交AB于點K.設正方形ACHI的面積為S1,正方形BCGF的面積為S2,長方形AKJD的面積為S3,長方形KJEB的面積為S4,下列結論:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3;④+=.其中正確的結論有()A.1個 B.2個 C.3個 D.4個3、如圖,矩形ABCD中,DE⊥AC于E,若∠ADE=2∠EDC,則∠BDE的度數(shù)為()A.36° B.30° C.27° D.18°4、如圖,已知平行四邊形ABCD的面積為8,E、F分別是BC、CD的中點,則△AEF的面積為()A.2 B.3 C.4 D.55、如圖,已知正方形ABCD的邊長為6,點E,F(xiàn)分別在邊AB,BC上,BE=CF=2,CE與DF交于點H,點G為DE的中點,連接GH,則GH的長為()A. B. C.4.5 D.4.3第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、點D、E分別是△ABC邊AB、AC的中點,已知BC=12,則DE=_____2、如圖,已知在矩形中,,,將沿對角線AC翻折,點B落在點E處,連接,則的長為_________.3、如圖中,分別是由個、個、個正方形連接成的圖形,在圖中,;在圖中,;通過以上計算,請寫出圖中______(用含的式子表示)4、如圖,在正方形ABCD中,點O在內(nèi),,則的度數(shù)為______.5、如圖,矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE翻折至△AFE,連接CF,則CF的長為___.三、解答題(5小題,每小題10分,共計50分)1、如圖,在平行四邊形ABCD中,,點E、F分別是BC、AD的中點.(1)求證:;(2)當時,在不添加輔助線的情況下,直接寫出圖中等于的2倍的所有角.2、已知,在中,,,點D為BC的中點.(1)觀察猜想如圖①,若點E、F分別是AB、AC的中點,則線段DE與DF的數(shù)量關系是______________;線段DE與DF的位置關系是______________.(2)類比探究如圖②,若點E、F分別是AB、AC上的點,且,上述結論是否仍然成立,若成立,請證明:若不成立,請說明理由;(3)解決問題如圖③,若點E、F分別為AB、CA延長線的點,且,請直接寫出的面積.

3、如圖,在?ABCD中,對角線AC的垂直平分線EF交AD于點F,交BC于點E,交AC于點O.求證:四邊形AECF是菱形.(小海的證明過程)證明:∵EF是AC的垂直平分線,∴OA=OC,OE=OF,EF⊥AC,∴四邊形AECF是平行四邊形.又∵EF⊥AC,∴四邊形AECF是菱形.(老師評析)小海利用對角線互相平分證明了四邊形AECF是平行四邊形,再利用對角線互相垂直證明它是菱形,可惜有一步錯了.(挑錯改錯)(1)請你幫小海找出錯誤的原因;(2)請你根據(jù)小海的思路寫出此題正確的證明過程.

4、在Rt△ABC中,∠ACB=90°,AC=BC,點D為AB邊上一點,過點D作DE⊥AB,交BC于點E,連接AE,取AE的中點P,連接DP,CP.(1)觀察猜想:如圖(1),DP與CP之間的數(shù)量關系是,DP與CP之間的位置關系是.(2)類比探究:將圖(1)中的△BDE繞點B逆時針旋轉45°,(1)中的結論是否仍然成立?若成立,請就圖(2)的情形給出證明;若不成立,請說明理由.(3)問題解決:若BC=3BD=3,將圖(1)中的△BDE繞點B在平面內(nèi)自由旋轉,當BE⊥AB時,請直接寫出線段CP的長.5、如圖,等腰△ABC中,AB=AC,∠BAC=90°,BE平分∠ABC交AC于E,過C作CD⊥BE于D,(1)如圖1,求證:CD=BE(2)如圖2,過點A作AF⊥BE,寫出AF,BD,CD之間的數(shù)量關系并說明理由.-參考答案-一、單選題1、C【解析】【分析】根據(jù)菱形的判定分析即可;【詳解】∵四邊形ABCD時平行四邊形,AO⊥BO,∴是菱形;故選C.【點睛】本題主要考查了菱形的判定,準確分析判斷是解題的關鍵.2、C【解析】【分析】根據(jù)SAS證△ABI≌△ADC即可得證①正確,過點B作BM⊥IA,交IA的延長線于點M,根據(jù)邊的關系得出S△ABI=S1,即可得出②正確,過點C作CN⊥DA交DA的延長線于點N,證S1=S3即可得證③正確,利用勾股定理可得出S1+S2=S3+S4,即能判斷④不正確.【詳解】解:①∵四邊形ACHI和四邊形ABED都是正方形,∴AI=AC,AB=AD,∠IAC=∠BAD=90°,∴∠IAC+∠CAB=∠BAD+∠CAB,即∠IAB=∠CAD,在△ABI和△ADC中,,∴△ABI≌△ADC(SAS),∴BI=CD,故①正確;②過點B作BM⊥IA,交IA的延長線于點M,∴∠BMA=90°,∵四邊形ACHI是正方形,∴AI=AC,∠IAC=90°,S1=AC2,∴∠CAM=90°,又∵∠ACB=90°,∴∠ACB=∠CAM=∠BMA=90°,∴四邊形AMBC是矩形,∴BM=AC,∵S△ABI=AI?BM=AI?AC=AC2=S1,由①知△ABI≌△ADC,∴S△ACD=S△ABI=S1,即2S△ACD=S1,故②正確;③過點C作CN⊥DA交DA的延長線于點N,∴∠CNA=90°,∵四邊形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3=AD?AK,∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四邊形AKCN是矩形,∴CN=AK,∴S△ACD=AD?CN=AD?AK=S3,即2S△ACD=S3,由②知2S△ACD=S1,∴S1=S3,在Rt△ACB中,AB2=BC2+AC2,∴S3+S4=S1+S2,又∵S1=S3,∴S1+S4=S2+S3,即③正確;④在Rt△ACB中,BC2+AC2=AB2,∴S3+S4=S1+S2,∴,故④錯誤;綜上,共有3個正確的結論,故選:C.【點睛】本題主要考查勾股定理,正方形的性質(zhì),矩形性質(zhì),全等三角形的判定和性質(zhì)等知識,熟練掌握勾股定理和全等三角形的判定和性質(zhì)是解題的關鍵.3、B【解析】【分析】根據(jù)已知條件可得以及的度數(shù),然后求出各角的度數(shù)便可求出.【詳解】解:在矩形ABCD中,,∵,∴,,∵,∴,∵,∴,∴,∴.故選:B.【點睛】題目主要考查矩形的性質(zhì),三角形內(nèi)角和及等腰三角形的性質(zhì),理解題意,綜合運用各個性質(zhì)是解題關鍵.4、B【解析】【分析】連接AC,由平行四邊形的性質(zhì)可得,再由E、F分別是BC,CD的中點,即可得到,,,由此求解即可.【詳解】解:如圖所示,連接AC,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,AB=CD,AB∥CD,∴∵E、F分別是BC,CD的中點,∴,,,∴,故選B.【點睛】本題主要考查了平行四邊形的性質(zhì),與三角形中線有關的面積問題,解題的關鍵在于能夠熟練掌握平行四邊形的性質(zhì).5、A【解析】【分析】根據(jù)正方形的四條邊都相等可得BC=DC,每一個角都是直角可得∠B=∠DCF=90°,然后利用“邊角邊”證明△CBE≌△DCF,得∠BCE=∠CDF,進一步得∠DHC=∠DHE=90°,從而知GH=DE,利用勾股定理求出DE的長即可得出答案.【詳解】解:∵四邊形ABCD為正方形,∴∠B=∠DCF=90°,BC=DC,在△CBE和△DCF中,,∴△CBE≌△DCF(SAS),∴∠BCE=∠CDF,∵∠BCE+∠DCH=90°,∴∠CDF+∠DCH=90°,∴∠DHC=∠DHE=90°,∵點G為DE的中點,∴GH=DE,∵AD=AB=6,AE=AB﹣BE=6﹣2=4,∴,∴GH=.故選A.【點睛】本題主要考查了正方形的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,直角三角形斜邊上的中線,解題的關鍵在于能夠熟練掌握相關知識進行求解.二、填空題1、6【解析】【分析】根據(jù)三角形的中位線等于第三邊的一半進行計算即可.【詳解】解:∵D、E分別是△ABC邊AB、AC的中點,∴DE是△ABC的中位線,∵BC=12,∴DE=BC=6,故答案為6.【點睛】本題主要考查了三角形中位線定理,熟知三角形中位線定理是解題的關鍵.2、【解析】【分析】過點E作EF⊥AD于點F,先證明CG=AG,再利用勾股定理列方程,求出AG的值,結合三角形的面積法和勾股定理,即可求解.【詳解】解:如圖所示:過點E作EF⊥AD于點F,有折疊的性質(zhì)可知:∠ACB=∠ACE,∵AD∥BC,∴∠ACB=∠CAD,∴∠CAD=∠ACE,∴CG=AG,設CG=x,則DG=8-x,∵在中,,∴x=5,∴AG=5,在中,EG=,EF⊥AD,∠AEG=90°,∴,∵在中,,、∴DF=8-=,∴在中,,故答案是:.【點睛】本題主要考查矩形的性質(zhì),折疊的性質(zhì),勾股定理,等腰三角形的判定定理,添加輔助線構造直角三角形,是解題的關鍵.3、90n【解析】【分析】連接各小正方形的對角線,由圖1中四邊形內(nèi)角和定理化簡可得:;由圖2中四邊形內(nèi)角和定理化簡可得:;結合圖形即可發(fā)現(xiàn)規(guī)律,求得結果.【詳解】解:連接各小正方形的對角線,如下圖:圖中,,即,圖中,,即,,以此類推,,故答案為:.【點睛】題目主要考查根據(jù)規(guī)律列出相應代數(shù)式,正方形性質(zhì)等,理解題意,探索發(fā)現(xiàn)規(guī)律是解題關鍵.4、135°【解析】【分析】先根據(jù)正方形的性質(zhì)得到∠OAC+∠OAD=45°,再由∠OAC=∠ODA,推出∠ODA+∠OAD=45°,即可利用三角形內(nèi)角和定理求解.【詳解】解:∵四邊形ABCD是正方形,∴∠CAD=45°,∴∠OAC+∠OAD=45°,又∵∠OAC=∠ODA,∴∠ODA+∠OAD=45°,∴∠AOD=180°-∠ODA-∠OAD=135°,故答案為:135°.【點睛】本題主要考查了正方形的性質(zhì),三角形內(nèi)角和定理,解題的關鍵在于能夠熟練掌握正方形的性質(zhì).5、3.6【解析】【分析】連接BF,根據(jù)三角形的面積公式求出BH,得到BF,根據(jù)直角三角形的判定得到∠BFC=90°,根據(jù)勾股定理求出答案.【詳解】解:連接BF,∵BC=6,點E為BC的中點,∴BE=3,又∵AB=4,∴AE=,∴BH=,則BF=,∵點E為BC的中點,∴BE=EC,∵△ABE沿AE翻折至△AFE,∴FE=BE,∴FE=BE=EC,∴∠CBF=∠EFB,∠BCF=∠EFC,∴2∠EFB+2∠EFC=180°,∴∠EFB+∠EFC=90°∴∠BFC=90°,∴CF=.故答案為:3.6.【點睛】本題考查的是翻折變換的性質(zhì)和矩形的性質(zhì),掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等是解題的關鍵.三、解答題1、(1)證明見解析;(2)【分析】(1)先證明再證明從而可得結論;(2)證明是等邊三角形,再分別求解從而可得答案.【詳解】證明(1)平行四邊形ABCD中,,點E、F分別是BC、AD的中點,(2),是等邊三角形,四邊形是平行四邊形,而,所以等于的2倍的角有:【點睛】本題考查的是全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),平行四邊形的性質(zhì),證明“是等邊三角形”是解(2)的關鍵.2、(1),;(2)成立,證明見解析;(3)【分析】(1)由點E、F、D分別是AB、AC、BC的中點,可得,,,,再由,,得,,由此即可得到答案;(2)連接,只需要證明,得到,,即可得到結論;(3)連接AD,證明△BDE≌△ADF得到,則,由此求解即可.【詳解】解:(1)∵點E、F、D分別是AB、AC、BC的中點,∴,,,,∵,,∴,,∴即,故答案為:,;(2)結論成立:,,證明:如圖所示,連接,∵,,D為BC的中點,∴,且AD平分,,∴,在和中,,∴,∴,,∵,∴,即,即;(3)如圖所示,連接AD,∵,,D為BC的中點,∴∴,且AD平分,,∴,∴∠FAD=180°-∠CAD=135°,∠EBD=180°-∠ABC=135°,∴∠FAD=∠EBD,在在和中,,∴△BDE≌△ADF(SAS),∴,∴,∵,∴,∴,∴【點睛】本題主要考查了三角形中位線定理,全等三角形的性質(zhì)與判定,等腰直角三角形的性質(zhì)等等,解題的關鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.3、(1)見解析;(2)見解析【分析】(1)由垂直平分線的性質(zhì)可求解;(2)由“”可證,可得,且,,由菱形的判定可證四邊形是菱形.【詳解】解:(1)是的垂直平分線,,,不能得出;(2)四邊形是平行四邊形,.是的垂直平分線,,,且,,且四邊形是平行四邊形.四邊形是菱形.【點睛】本題考查了菱形的判定,全等三角形的判定和性質(zhì),線段垂直平分線的性質(zhì),平行四邊形的性質(zhì),解題的關鍵是熟練運用線段垂直平分線的性質(zhì).4、(1)PD=PC,PD⊥PC;(2)成立,見解析;(3)2或4【分析】(1)根據(jù)直角三角形斜邊中線的性質(zhì),可得,根據(jù)角之間的關系即可,即可求解;(2)過點P作PT⊥AB交BC的延長線于T,交AC于點O,根據(jù)全等三角形的判定與性質(zhì)求解即可;(3)分兩種情況,當點E在BC的上方時和當點E在BC的下方時,過點P作PQ⊥BC于Q,利用等腰直角三角形的性質(zhì)求得,即可求解.【詳解】解:(1)∵∠ACB=90°,AC=BC,∴,∵,∴,∵點P為AE的中點,∴,∴,,∴,∴故答案為:,.(2)結論成立.理由如下:過點P作PT⊥AB交BC的延長線于T,交AC于點O.則∴,∴,,由勾股定理可得:∴∴∴∵點P為AE的中點,∴∴在中,,∴,∴∴∴,∴∴,∴.(3)如圖3﹣1中,當點E在BC的上方時,過點P作PQ⊥BC于Q.則,∴∵∴由(2)可得,,,∴為等腰直角三角形∴∴由勾股定理得,如圖3﹣2中,當點E在BC的下方時,同法可得PC=PD=2.綜上所述,PC的長為4或2.【點睛】此題考查了等腰直角三角形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,解題的關鍵是熟練掌握相關基本性質(zhì),做輔助線,構造出全等三角形.5、(1)證明見解析;(2)BD=CD+2AF,理由見解析【分析】(1)延長BA與CD的延長線交于點G,先證明△ABE≌△ACG得到BE=CG,由BD是∠ABC的角平分線,得到∠GBD=∠CBD,即可證明△BDG≌△BDC得到

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論