版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》綜合測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、下列命題正確的是()A.對(duì)角線相等的四邊形是平行四邊形 B.對(duì)角線相等的四邊形是矩形C.對(duì)角線互相垂直的平行四邊形是菱形 D.對(duì)角線互相垂直且相等的四邊形是正方形2、如圖,矩形ABCD中,AC交BD于點(diǎn)O,且AB=24,BC=10,將AC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至CE.連接AE,且F、G分別為AE、EC的中點(diǎn),則四邊形OFGC的面積是()A.100 B.144 C.169 D.2253、已知菱形的邊長(zhǎng)為6,一個(gè)內(nèi)角為60°,則菱形較長(zhǎng)的對(duì)角線長(zhǎng)是()A. B. C.3 D.64、如圖,在中,,點(diǎn),分別是,上的點(diǎn),,,點(diǎn),,分別是,,的中點(diǎn),則的長(zhǎng)為().A.4 B.10 C.6 D.85、如圖所示,在ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,過點(diǎn)O的直線EF分別交AD于點(diǎn)E,BC于點(diǎn)F,,則ABCD的面積為(
)A.24 B.32 C.40 D.48第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,M,N分別是矩形ABCD的邊AD,AB上的點(diǎn),將矩形ABCD沿MN折疊,使點(diǎn)A恰好落在邊BC上的點(diǎn)E處,連接MC,若AB=8,AD=16,BE=4,則MC的長(zhǎng)為________.2、如圖,菱形ABCD的兩條對(duì)角線長(zhǎng)分別為AC=6,BD=8,點(diǎn)P是BC邊上的一動(dòng)點(diǎn),則AP的最小值為__.3、如圖,在△ABC中,D,E分別是邊AB,AC的中點(diǎn),∠B=50°.現(xiàn)將△ADE沿DE折疊點(diǎn)A落在三角形所在平面內(nèi)的點(diǎn)為A1,則∠BDA1的度數(shù)為_____.4、如圖,在平行四邊形ABCD中,∠B=45°,AD=8,E、H分別為邊AB、CD上一點(diǎn),將?ABCD沿EH翻折,使得AD的對(duì)應(yīng)線段FG經(jīng)過點(diǎn)C,若FG⊥CD,CG=4,則EF的長(zhǎng)度為_____.5、七巧板被西方人稱為“東方魔術(shù)”.下面的兩幅圖是由同一副七巧板拼成的.已知七巧板拼成的正方形(如圖1)邊長(zhǎng)為.若圖2的“小狐貍”圖案中的陰影部分面積為,那么________.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,在菱形ABCD中,點(diǎn)E,F(xiàn)分別是邊AB和BC上的點(diǎn),且BE=BF.求證:∠DEF=∠DFE.
2、如圖,將矩形沿折疊,使點(diǎn)落在邊上的點(diǎn)處;再將矩形沿折疊,使點(diǎn)落在點(diǎn)處且過點(diǎn).
(1)求證:四邊形是平行四邊形;(2)當(dāng)是多少度時(shí),四邊形為菱形?試說明理由.3、如圖,在中,對(duì)角線AC、BD交于點(diǎn)O,AB=10,AD=8,AC⊥BC,求(1)的面積;(2)△AOD的周長(zhǎng).
4、如圖,已知正方形中,點(diǎn)是邊延長(zhǎng)線上一點(diǎn),連接,過點(diǎn)作,垂足為點(diǎn),與交于點(diǎn).(1)求證:;(2)若,,求BG的長(zhǎng).5、如圖,正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).試畫出一個(gè)頂點(diǎn)都在格點(diǎn)上,且面積為10的正方形.-參考答案-一、單選題1、C【解析】【分析】根據(jù)平行四邊形、矩形、菱形以及正方形的判定方法,對(duì)選項(xiàng)逐個(gè)判斷即可.【詳解】解:A、對(duì)角線互相平分的四邊形是平行四邊形,選項(xiàng)錯(cuò)誤,不符合題意;B、對(duì)角線相等平行四邊形是矩形,選項(xiàng)錯(cuò)誤,不符合題意;C、對(duì)角線互相垂直的平行四邊形是菱形,選項(xiàng)正確,符合題意;D、對(duì)角線互相垂直且相等的平行四邊形是正方形,選項(xiàng)錯(cuò)誤,不符合題意;故選C【點(diǎn)睛】此題考查了平行四邊形、矩形、菱形以及正方形的判定,掌握它們的判定方法是解題的關(guān)鍵.2、C【解析】【分析】先根據(jù)矩形的性質(zhì)、三角形中位線定理可得,再根據(jù)平行四邊形的判定可得四邊形為平行四邊形,然后根據(jù)旋轉(zhuǎn)的性質(zhì)可得,從而可得,最后根據(jù)正方形的判定可得四邊形為正方形,由此即可得.【詳解】解:四邊形為矩形,,,分別為的中點(diǎn),,,四邊形為平行四邊形,又繞點(diǎn)順時(shí)針旋轉(zhuǎn),,,平行四邊形為正方形,四邊形的面積是,故選:C.【點(diǎn)睛】本題考查了矩形的性質(zhì)、正方形的判定與性質(zhì)、三角形中位線定理等知識(shí)點(diǎn),熟練掌握正方形的判定與性質(zhì)是解題關(guān)鍵.3、B【解析】【分析】根據(jù)一個(gè)內(nèi)角為60°可以判斷較短的對(duì)角線與兩鄰邊構(gòu)成等邊三角形,求出較長(zhǎng)的對(duì)角線的一半,再乘以2即可得解.【詳解】解:如圖,菱形ABCD,∠ABC=60°,∴AB=BC,AC⊥BD,OB=OD,∴△ABC是等邊三角形,菱形的邊長(zhǎng)為6,∴AC=6,∴AO=AC=3,在Rt△AOB中,BO===3,∴菱形較長(zhǎng)的對(duì)角線長(zhǎng)BD是:2×3=6.故選:B.【點(diǎn)睛】本題考查了菱形的性質(zhì)和勾股定理,等邊三角形的判定,解題關(guān)鍵是熟練運(yùn)用菱形的性質(zhì)和等邊三角形的判定求出對(duì)角線長(zhǎng).4、B【解析】【分析】根據(jù)三角形中位線定理得到PD=BF=6,PD∥BC,根據(jù)平行線的性質(zhì)得到∠PDA=∠CBA,同理得到∠PDQ=90°,根據(jù)勾股定理計(jì)算,得到答案.【詳解】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵點(diǎn)P,D分別是AF,AB的中點(diǎn),∴PD=BF=6,PD//BC,∴∠PDA=∠CBA,同理,QD=AE=8,∠QDB=∠CAB,∴∠PDA+∠QDB=90°,即∠PDQ=90°,∴PQ==10,故選:B.【點(diǎn)睛】本題考查的是三角形中位線定理、勾股定理,掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關(guān)鍵.5、B【解析】【分析】先根據(jù)平行四邊形的性質(zhì)可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,從而可得,然后根據(jù)平行四邊形的性質(zhì)即可得.【詳解】解:∵四邊形是平行四邊形,,,在和中,∵,,,,則的面積為,故選:B.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)、三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),熟練掌握平行四邊形的性質(zhì)是解題關(guān)鍵.二、填空題1、10【解析】【分析】過E作EF⊥AD于F,根據(jù)矩形ABCD沿MN折疊,使點(diǎn)A恰好落在邊BC上的點(diǎn)E處,得出△ANM≌△ENM,可得AM=EM,根據(jù)矩形ABCD,得出∠B=∠A=∠D=90°,再證四邊形ABEF為矩形,得出AF=BE=4,F(xiàn)E=AB=8,設(shè)AM=EM=m,F(xiàn)M=m-4,根據(jù)勾股定理,即,解方程m=10即可.【詳解】解:過E作EF⊥AD于F,∵矩形ABCD沿MN折疊,使點(diǎn)A恰好落在邊BC上的點(diǎn)E處,∴△ANM≌△ENM,∴AM=EM,∵矩形ABCD,∴∠B=∠A=∠D=90°,∵FE⊥AD,∴∠AFE=∠B=∠A=90°,∴四邊形ABEF為矩形,∴AF=BE=4,F(xiàn)E=AB=8,設(shè)AM=EM=m,F(xiàn)M=m-4在Rt△FEM中,根據(jù)勾股定理,即,解得m=10,∴MD=AD-AM=16-10=6,在Rt△MDC中,∴MC=.故答案為10.【點(diǎn)睛】本題考查折疊軸對(duì)稱性質(zhì),矩形判定與性質(zhì),勾股定理,掌握折疊軸對(duì)稱性質(zhì),矩形判定與性質(zhì),勾股定理是解題關(guān)鍵.2、4.8【解析】【分析】由垂線段最短,可得AP⊥BC時(shí),AP有最小值,由菱形的性質(zhì)和勾股定理可求BC的長(zhǎng),由菱形的面積公式可求解.【詳解】設(shè)AC與BD的交點(diǎn)為O,∵點(diǎn)P是BC邊上的一動(dòng)點(diǎn),∴AP⊥BC時(shí),AP有最小值,∵四邊形ABCD是菱形,∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,∴,∵,∴,故答案為:4.8.【點(diǎn)睛】本題考查了菱形的性質(zhì),勾股定理,確定當(dāng)AP⊥BC時(shí),AP有最小值是本題關(guān)鍵.3、80°【解析】【分析】由翻折的性質(zhì)得∠ADE=∠A1DE,由中位線的性質(zhì)得DE//BC,由平行線的性質(zhì)得∠ADE=∠B=50°,即可解決問題.【詳解】解:由題意得:∠ADE=∠A1DE;∵D、E分別是邊AB、AC的中點(diǎn),∴DE//BC,∴∠ADE=∠B=∠A1DE=50°,∴∠A1DA=100°,∴∠BDA1=180°?100°=80°.故答案為:80°.【點(diǎn)睛】本題主要考查了翻折變換及其應(yīng)用問題;同時(shí)還考查了三角形的中位線定理等幾何知識(shí)點(diǎn).熟練掌握各性質(zhì)是解題的關(guān)鍵.4、【解析】【分析】延長(zhǎng)CF與AB交于點(diǎn)M,由平行四邊形的性質(zhì)得BC長(zhǎng)度,GM⊥AB,由折疊性質(zhì)得GF,∠EFM,進(jìn)而得FM,再根據(jù)△EFM是等腰直角三角形,便可求得結(jié)果.【詳解】解:延長(zhǎng)CF與AB交于點(diǎn)M,∵FG⊥CD,AB∥CD,∴CM⊥AB,∵∠B=45°,BC=AD=8,∴CM=4,由折疊知GF=AD=8,∵CG=4,∴MF=CM-CF=CM-(GF-CG)=4-4,∵∠EFC=∠A=180°-∠B=135°,∴∠MFE=45°,∴EF=MF=(4-4)=8-4.故答案為:8-4.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),折疊的性質(zhì),解直角三角形的應(yīng)用,關(guān)鍵是作輔助線構(gòu)造直角三角形.5、4【解析】【分析】設(shè)陰影小正方形的邊長(zhǎng)為xcm,根據(jù)陰影部分的面積剛好是大正方形里梯形的面積,求出x的值,進(jìn)而得出大正方形的對(duì)角線的長(zhǎng)度是4xcm,最后求出邊長(zhǎng)a即可.【詳解】解:設(shè)陰影小正方形的邊長(zhǎng)為xcm,由題意得:(2x+4x)x=6,解得:x=或a=-(舍去),∴小正方形的邊長(zhǎng)為cm,則大正方形的對(duì)角線長(zhǎng)為4×=4(cm),∴a=4÷=4(cm),故答案為:4.【點(diǎn)睛】本題主要考查七巧板的知識(shí),熟練掌握七巧板各邊的關(guān)系是解題的關(guān)鍵.三、解答題1、見解析【分析】根據(jù)菱形的性質(zhì)可得AB=BC=CD=AD,∠A=∠C,再由BE=BF,可推出AE=CF,即可利用SAS證明△ADE≌△CDF得到DE=DF,則∠DEF=∠DFE.【詳解】解:∵四邊形ABCD是菱形,∴AB=BC=CD=AD,∠A=∠C,∵BE=BF,∴AB-BE=BC-BF,即AE=CF,∴△ADE≌△CDF(SAS),∴DE=DF,∴∠DEF=∠DFE.【點(diǎn)睛】本題主要考查了菱形的性質(zhì),全等三角形的性質(zhì)與判定,等腰三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握菱形的性質(zhì).2、(1)見解析;(2)當(dāng)∠B1FE=60°時(shí),四邊形EFGB為菱形,理由見解析【分析】(1)由題意,,結(jié)合,得,同理可得,即,結(jié)合,依據(jù)平行四邊形的判定定理即可證明四邊形BEFG是平行四邊形;(2)根據(jù)菱形的性質(zhì)可得,結(jié)合(1)中結(jié)論得出為等邊三角形,依據(jù)等邊三角形的性質(zhì)及(1)中結(jié)論即可求出角的大小.【詳解】證明:(1)∵,∴.又∵,∴.∴.同理可得:.∴,又∵,∴四邊形BEFG是平行四邊形;(2)當(dāng)時(shí),四邊形EFGB為菱形.理由如下:∵四邊形BEFG是菱形,∴,由(1)得:,∴,∴為等邊三角形,∴,∴.【點(diǎn)睛】題目主要考查平行四邊形和菱形的判定定理和性質(zhì),矩形的折疊問題,等邊三角形的性質(zhì),熟練掌握特殊四邊形的判定和性質(zhì)是解題關(guān)鍵.3、(1)48(2)【分析】(1)利用勾股定理先求出高AC,故可求解面積;(2)根據(jù)平行四邊形的性質(zhì)求出AO,再利用勾股定理求出OB的長(zhǎng),故可求解.【詳解】解:(1)∵四邊形ABCD是平行四邊形,且AD=8
∴BC=AD=8∵AC⊥BC∴∠ACB=90°在Rt△ABC中,由勾股定理得AC2=AB2-BC2∴∴(2)∵四邊形ABCD是平行四邊形,且AC=6∴∵∠ACB=90°,BC=8∴,∴∴.【點(diǎn)睛】此題主要考查平行四邊形的性質(zhì),解題的關(guān)鍵是熟知平行四邊形的性質(zhì)及勾股定理的應(yīng)用.4、(1)見解析;(2)【分析】(1)由正方形的性質(zhì)可得,,由的余角相等可得∠CBG=∠CDE,進(jìn)而證明△BCG≌△DCE,從而證明CG=CE;(2)證明正方形的性質(zhì)可得,結(jié)合已知條件即可求得,進(jìn)而勾股定理即可求得的長(zhǎng)【詳解】(1)∵BF⊥DE∴∠BFE=90°∵四邊形ABCD是正方形∴∠DCE=90°,∴∠CBG+∠E=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年食品安全與衛(wèi)生管理考試題集及答案
- 2026年?duì)I銷策略實(shí)戰(zhàn)題庫(kù)市場(chǎng)定位與消費(fèi)者行為研究
- 2026年中醫(yī)藥學(xué)基礎(chǔ)理論與應(yīng)用初級(jí)試題
- 2026年計(jì)算機(jī)網(wǎng)絡(luò)安全專業(yè)試題庫(kù)認(rèn)證題庫(kù)及答案解析
- 2026年人工智能技術(shù)與應(yīng)用考試政務(wù)云平臺(tái)的AI技術(shù)探索
- 2026年軟件測(cè)試工程師實(shí)操技巧與答案解析
- 2025 小學(xué)二年級(jí)道德與法治上冊(cè)家庭綠植我按時(shí)澆水養(yǎng)護(hù)促成長(zhǎng)更翠綠課件
- 2026年高頻面試問題專業(yè)答案與解析集
- 2026年化學(xué)實(shí)驗(yàn)技能操作模擬題
- 2026年金融分析師考試技巧投資策略模擬題集
- 2026福建廈門市高崎出入境邊防檢查站招聘警務(wù)輔助人員30人備考題庫(kù)及完整答案詳解
- 2026西藏自治區(qū)教育考試院招聘非編工作人員11人筆試備考試題及答案解析
- 2026年度黑龍江省生態(tài)環(huán)境廳所屬事業(yè)單位公開招聘工作人員57人備考題庫(kù)及一套答案詳解
- 炎癥因子風(fēng)暴與神經(jīng)遞質(zhì)紊亂的干細(xì)胞干預(yù)策略
- 2026年1月浙江省高考(首考)英語試題(含答案)+聽力音頻+聽力材料
- 中國(guó)大型SUV市場(chǎng)數(shù)據(jù)洞察報(bào)告-
- 太陽能路燈施工組織設(shè)計(jì)
- 2026年江蘇衛(wèi)生健康職業(yè)學(xué)院?jiǎn)握新殬I(yè)傾向性測(cè)試必刷測(cè)試卷及答案解析(名師系列)
- 人教版初中英語七至九年級(jí)單詞匯總表(七年級(jí)至九年級(jí)全5冊(cè))
- cnc加工中心點(diǎn)檢表
- 計(jì)劃決策評(píng)審-匯報(bào)模板課件
評(píng)論
0/150
提交評(píng)論