版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
中考數(shù)學總復習《圓》基礎強化考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在△ABC中,∠ACB=90°,AC=BC,AB=4cm,CD是中線,點E、F同時從點D出發(fā),以相同的速度分別沿DC、DB方向移動,當點E到達點C時,運動停止,直線AE分別與CF、BC相交于G、H,則在點E、F移動過程中,點G移動路線的長度為(
)A.2 B.π C.2π D.π2、有一個圓的半徑為5,則該圓的弦長不可能是(
)A.1 B.4 C.10 D.113、如圖,AB為的直徑,C,D為上的兩點,若,則的度數(shù)為(
)A. B. C. D.4、已知扇形的半徑為6,圓心角為.則它的面積是(
)A. B. C. D.5、如圖,在四邊形ABCD中,則AB=(
)A.4 B.5 C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,正五邊形ABCDE和正三角形AMN都是⊙O的內(nèi)接多邊形,則∠BOM=_______.2、如圖,正五邊形ABCDE內(nèi)接于⊙O,點F在上,則∠CFD=_____度.3、如圖,A、D是⊙O上的兩點,BC是直徑,若∠D=32°,則∠OAC=_______度.4、如圖,正方形ABCD,邊長為4,點P和點Q在正方形的邊上運動,且PQ=4,若點P從點B出發(fā)沿B→C→D→A的路線向點A運動,到點A停止運動;點Q從點A出發(fā),沿A→B→C→D的路線向點D運動,到達點D停止運動.它們同時出發(fā),且運動速度相同,則在運動過程中PQ的中點O所經(jīng)過的路徑長為_____.5、如圖,四邊形是正方形,曲線是由一段段90度的弧組成的.其中:的圓心為點A,半徑為;的圓心為點B,半徑為;的圓心為點C,半徑為;的圓心為點D,半徑為;…的圓心依次按點A,B,C,D循環(huán).若正方形的邊長為1,則的長是_________.三、解答題(5小題,每小題10分,共計50分)1、已知:A、B、C、D是⊙O上的四個點,且,求證:AC=BD.2、如圖,沿一條母線將圓錐側(cè)面剪開并展平,得到一個扇形,若圓錐的底面圓的半徑,扇形的圓心角,求該圓錐的母線長.3、如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,點F為BC的中點,連接EF和AD.(1)求證:EF是⊙O的切線;(2)若⊙O的半徑為2,∠EAC=60°,求AD的長.4、已知圓弧的半徑為15厘米,圓弧的長度為,求圓心角的度數(shù).5、如圖,已知∠MAN,按下列要求補全圖形.(要求利用沒有刻度的直尺和圓規(guī)作圖,不寫作法,保留作圖痕跡)①在射線AN上取點O,以點O為圓心,以OA為半徑作⊙O分別交AM、AN于點C、B;②在∠MAN的內(nèi)部作射線AD交⊙O于點D,使射線AD上的各點到∠MAN的兩邊距離相等,請根據(jù)所作圖形解答下列問題;(1)連接OD,則OD與AM的位置關(guān)系是,理論依據(jù)是;(2)若點E在射線AM上,且DE⊥AM于點E,請判斷直線DE與⊙O的位置關(guān)系;(3)已知⊙O的直徑AB=6cm,當弧BD的長度為cm時,四邊形OACD為菱形.-參考答案-一、單選題1、D【解析】【分析】【詳解】解:如圖,∵CA=CB,∠ACB=90°,AD=DB,∴CD⊥AB,∴∠ADE=∠CDF=90°,CD=AD=DB,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴∠DAE=∠DCF,∵∠AED=∠CEG,∴∠ADE=∠CGE=90°,∴A、C、G、D四點共圓,∴點G的運動軌跡為弧CD,∵AB=4,ABAC,∴AC=2,∴OA=OC,∵DA=DC,OA=OC,∴DO⊥AC,∴∠DOC=90°,∴點G的運動軌跡的長為π.故選:D.2、D【解析】【分析】根據(jù)圓的半徑為5,可得到圓的最大弦長為10,即可求解.【詳解】∵半徑為5,∴直徑為10,∴最長弦長為10,則不可能是11.故選:D.【考點】本題主要考查了圓的基本性質(zhì),理解圓的直徑是圓的最長的弦是解題的關(guān)鍵.3、B【解析】【分析】連接AD,如圖,根據(jù)圓周角定理得到,,然后利用互余計算出,從而得到的度數(shù).【詳解】解:連接AD,如圖,AB為的直徑,,,.故選B.【考點】本題主要考查了同弦所對的圓周角相等,直徑所對的圓周角是直角,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進行求解.4、D【解析】【分析】已知扇形的半徑和圓心角度數(shù)求扇形的面積,選擇公式直接計算即可.【詳解】解:.故選:D【考點】本題考查扇形面積公式的知識點,熟知扇形面積公式及適用條件是解題的關(guān)鍵.5、D【解析】【分析】延長AD,BC交于點E,則∠E=30°,先在Rt△CDE中,求得CE的長,然后在Rt△ABE中,根據(jù)∠E的正切函數(shù)求得AB的長【詳解】如圖,延長AD,BC交于點E,則∠E=30°,在Rt△CDE中,CE=2CD=6(30°銳角所對直角邊等于斜邊的一半),∴BE=BC+CE=8,在Rt△ABE中,AB=BE·tanE=8×=.故選D.【考點】本題考查了解直角三角形,特殊角的三角函數(shù)值,解此題的關(guān)鍵在于構(gòu)造一個直角三角形,然后利用銳角三角函數(shù)進行解答.二、填空題1、48°【解析】【分析】連接OA,分別求出正五邊形ABCDE和正三角形AMN的中心角,結(jié)合圖形計算即可.【詳解】連接OA,∵五邊形ABCDE是正五邊形,∴∠AOB==72°,∵△AMN是正三角形,∴∠AOM==120°,∴∠BOM=∠AOM-∠AOB=48°,故答案為48°.點睛:本題考查的是正多邊形與圓的有關(guān)計算,掌握正多邊形的中心角的計算公式是解題的關(guān)鍵.2、36.【解析】【分析】連接OC,OD.求出∠COD的度數(shù),再根據(jù)圓周角定理即可解決問題.【詳解】如圖,連接OC,OD.∵五邊形ABCDE是正五邊形,∴∠COD==72°,∴∠CFD=∠COD=36°,故答案為:36.【考點】本題考查了正多邊形和圓、圓周角定理等知識,解題的關(guān)鍵是熟練掌握基本知識.3、58【解析】【分析】根據(jù)∠D的度數(shù),可以得到∠ABC的度數(shù),然后根據(jù)BC是直徑,從而可以得到∠BAC的度數(shù),然后可以得到∠OCA的度數(shù),再根據(jù)OA=OC,從而可以得到∠OAC的度數(shù).【詳解】解:∵∠D=32°,∠D=∠ABC∴∠ABC=32°∵BC是直徑∴∠BAC=90°∴∠BCA=90°-∠ABC=90°-32°=58°∴∠OCA=58°∵OA=OC∴∠OAC=∠OCA∴∠OAC=58°故答案為58.【考點】本題考查了圓周角定理,圓心角、弧、弦的關(guān)系.解題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.4、【解析】【分析】【詳解】解:畫出點O運動的軌跡,如圖虛線部分,則點P從B到A的運動過程中,PQ的中點O所經(jīng)過的路線長等于3π,故答案為:3π.5、【解析】【分析】曲線是由一段段90度的弧組成的,半徑每次比前一段弧半徑+1,到,,再計算弧長.【詳解】解:由圖可知,曲線是由一段段90度的弧組成的,半徑每次比前一段弧半徑+1,,,……,,,故的半徑為,的弧長=.故答案為:.【考點】此題主要考查了弧長的計算,弧長的計算公式:,找到每段弧的半徑變化規(guī)律是解題關(guān)鍵.三、解答題1、詳見解析【解析】【分析】先根據(jù)可得,再根據(jù)同圓中等弧所對的弦相等即得.【詳解】證明:∵∴∴【考點】本題考查圓心角定理推論,解題關(guān)鍵是熟知同圓或等圓中,等弧所對的弦相等.2、【解析】【分析】根據(jù)側(cè)面展開圖的弧長等于底面周長列方程即可.【詳解】解:圓錐的底面周長,由題意可得,解得,所以該圓錐的母線長為.【考點】本題考查了圓錐的有關(guān)計算,解題關(guān)鍵是熟知圓錐的側(cè)面展開圖的弧長等于圓錐底面周長和圓錐母線等于圓錐側(cè)面展開圖半徑,根據(jù)題意建立方程.3、(1)見解析;(2)AD=.【解析】【分析】(1)連接FO,可根據(jù)三角形中位線的性質(zhì)可判斷易證OF∥AB,然后根據(jù)直徑所對的圓周角是直角,可得CE⊥AE,進而知OF⊥CE,然后根據(jù)垂徑定理可得∠FEC=∠FCE,∠OEC=∠OCE,再通過Rt△ABC可知∠OEC+∠FEC=90°,因此可證FE為⊙O的切線;(2)在Rt△OCD中和Rt△ACD中,分別利用勾股定理分別求出CD,AD的長即可.【詳解】(1)證明:連接CE,如圖所示:∵AC為⊙O的直徑,∴∠AEC=90°.∴∠BEC=90°,∵點F為BC的中點,∴EF=BF=CF,∴∠FEC=∠FCE,∵OE=OC,∴∠OEC=∠OCE,∵∠FCE+∠OCE=∠ACB=90°,∴∠FEC+∠OEC=∠OEF=90°,∴EF是⊙O的切線.(2)解:∵OA=OE,∠EAC=60°,∴△AOE是等邊三角形.∴∠AOE=60°,∴∠COD=∠AOE=60°,∵⊙O的半徑為2,∴OA=OC=2在Rt△OCD中,∵∠OCD=90°,∠COD=60°,∴∠ODC=30°,∴OD=2OC=4,∴CD=.在Rt△ACD中,∵∠ACD=90°,AC=4,CD=.∴AD==.【考點】本題主要考查直角三角形、全等三角形的判定與性質(zhì)以及與圓有關(guān)的位置關(guān)系.4、【解析】【分析】根據(jù)弧長的計算公式計算即可.【詳解】解:圓心角的度數(shù).【考點】本題考查弧長的計算,掌握弧長公式是解題的關(guān)鍵.5、(1)平行;內(nèi)錯角相等,兩直線平行;(2)相切,理由見解析;(3)π【解析】【分析】(1)根據(jù)角平分線的定義、圓的性質(zhì)可得,根據(jù)內(nèi)錯角相等,兩直線平行即可得證;(2)利用切線的定義即可判定;(3)根據(jù)菱形的性質(zhì)、圓的半徑相等可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年海南省公需課學習-生態(tài)環(huán)境公益訴訟制度研究1026
- 2025年營養(yǎng)健康顧問知識競賽題庫及答案(共120題)
- 2025年安全生產(chǎn)知識競賽題及答案(共60題)
- 期末培優(yōu)驗收卷三(試卷)2025-2026學年六年級語文上冊(統(tǒng)編版)
- 深圳數(shù)學試卷及詳細答案
- 隴南醫(yī)院招聘試題及答案
- 農(nóng)村荒山購買合同范本
- 維護版權(quán)的合同范本
- 2025年高考美術(shù)統(tǒng)考題庫及答案
- 2025年紀委監(jiān)委筆試真題及答案
- 7《包身工》課件2025-2026學年統(tǒng)編版高中語文選擇性必修中冊
- 2025廣東珠海市金灣區(qū)紅旗鎮(zhèn)招聘編外人員23人筆試考試參考試題及答案解析
- (新教材)部編人教版三年級上冊語文 習作:那次經(jīng)歷真難忘 教學課件
- 甘草成分的藥理作用研究進展-洞察及研究
- 具身智能+文化遺產(chǎn)數(shù)字化保護方案可行性報告
- (2025年新教材)部編人教版二年級上冊語文 語文園地七 課件
- 廣東深圳市2026屆化學高三第一學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析
- 電力公司考試大題題庫及答案
- 國企金融招聘筆試題及答案
- 重慶市金太陽好教育聯(lián)盟2026屆高三10月聯(lián)考(26-65C)英語(含答案)
- 成都市龍泉驛區(qū)衛(wèi)生健康局下屬15家醫(yī)療衛(wèi)生事業(yè)單位2025年下半年公開考試招聘工作人員(18人)備考考試題庫附答案解析
評論
0/150
提交評論