重難點(diǎn)解析人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合練習(xí)試卷(含答案詳解)_第1頁
重難點(diǎn)解析人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合練習(xí)試卷(含答案詳解)_第2頁
重難點(diǎn)解析人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合練習(xí)試卷(含答案詳解)_第3頁
重難點(diǎn)解析人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合練習(xí)試卷(含答案詳解)_第4頁
重難點(diǎn)解析人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合練習(xí)試卷(含答案詳解)_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

試卷第=page22頁,共=sectionpages11頁試卷第=page22頁,共=sectionpages22頁人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、下列條件中,能判定四邊形是正方形的是()A.對角線相等的平行四邊形 B.對角線互相平分且垂直的四邊形C.對角線互相垂直且相等的四邊形 D.對角線相等且互相垂直的平行四邊形2、如圖,已知四邊形ABCD和四邊形BCEF均為平行四邊形,∠D=60°,連接AF,并延長交BE于點(diǎn)P,若AP⊥BE,AB=3,BC=2,AF=1,則BE的長為()A.5 B.2 C.2 D.33、如圖,四邊形ABCD是平行四邊形,下列結(jié)論中錯誤的是()A.當(dāng)?ABCD是矩形時,∠ABC=90° B.當(dāng)?ABCD是菱形時,AC⊥BDC.當(dāng)?ABCD是正方形時,AC=BD D.當(dāng)?ABCD是菱形時,AB=AC4、如圖,的對角線交于點(diǎn)O,E是CD的中點(diǎn),若,則的值為()A.2 B.4 C.8 D.165、如圖,矩形OABC的邊OA長為2,邊AB長為1,OA在數(shù)軸上,以原點(diǎn)O為圓心,對角線OB的長為半徑畫弧,交正半軸于一點(diǎn),則這個點(diǎn)表示的實(shí)數(shù)是()A.2.5 B.2 C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、在四邊形ABCD中,若AB//CD,BC_____AD,則四邊形ABCD為平行四邊形.2、如圖,在正方形ABCD中,AB=2,取AD的中點(diǎn)E,連接EB,延長DA至F,使EF=EB,以線段AF為邊作正方形AFGH,點(diǎn)H在線段AB上,則的值是_____.3、如圖,將矩形ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕為EF.若AF=5,BF=3,則AC的長為_____.4、如圖,在?ABCD中,點(diǎn)E是對角線AC上一點(diǎn),過點(diǎn)E作AC的垂線,交邊AD于點(diǎn)P,交邊BC于點(diǎn)Q,連接PC、AQ,若AC=6,PQ=4,則PC+AQ的最小值為________________.5、如圖,在?ABCD中,BC=3,CD=4,點(diǎn)E是CD邊上的中點(diǎn),將△BCE沿BE翻折得△BGE,連接AE,A、G、E在同一直線上,則AG=______,點(diǎn)G到AB的距離為______.三、解答題(5小題,每小題10分,共計(jì)50分)1、已知:?ABCD的對角線AC,BD相交于O,M是AO的中點(diǎn),N是CO的中點(diǎn),求證:BM∥DN,BM=DN.

2、在如圖所示的4×3網(wǎng)格中,每個小正方形的邊長均為1,正方形頂點(diǎn)叫格點(diǎn),連接兩個網(wǎng)格格點(diǎn)的線段叫網(wǎng)格線段.點(diǎn)A固定在格點(diǎn)上.(1)若a是圖中能用網(wǎng)格線段表示的最小無理數(shù),b是圖中能用網(wǎng)格線段表示的最大無理數(shù),則a=,b=,=;(2)請?jiān)诰W(wǎng)格中畫出頂點(diǎn)在格點(diǎn)上且邊長為的所有菱形ABCD,你畫出的菱形面積分別為,.3、如圖,在平面直角坐標(biāo)系中,ΔABC三個頂點(diǎn)的坐標(biāo)分別為A(1,1)、B(4,2)、C(3,5).(1)請畫出△ABC關(guān)于x軸的對稱圖形ΔA1B1C1;(2)借助網(wǎng)格,利用無刻度直尺畫出線段CD,使CD平分ΔABC的面積.(保留確定點(diǎn)D的痕跡).4、如圖,在中,,D是邊上的一點(diǎn),過D作交于點(diǎn)E,,連接交于點(diǎn)F.(1)求證:是的垂直平分線;(2)若點(diǎn)D為的中點(diǎn),且,求的長.5、如圖,在?ABCD中,對角線AC,BD交于點(diǎn)O,E是BD延長線上一點(diǎn),且△ACE是等邊三角形.(1)求證:四邊形ABCD是菱形;(2)若∠AED=2∠EAD,AB=a,求四邊形ABCD的面積.-參考答案-一、單選題1、D【解析】【分析】根據(jù)正方形的判定定理進(jìn)行判斷即可.【詳解】解:A、對角線相等的平行四邊形是矩形,不符合題意;B、對角線互相平分且垂直的四邊形是菱形,不符合題意;對角線相等且互相垂直的平行四邊形是正方形,故C選項(xiàng)不符合題意;D選項(xiàng)符合題意;故選:D.【點(diǎn)睛】本題考查了正方形的判定,熟知正方形的判定定理是解本題的關(guān)鍵.2、D【解析】【分析】過點(diǎn)D作DH⊥BC,交BC的延長線于點(diǎn)H,連接BD,DE,先證∠DHC=90o,再證四邊形ADEF是平行四邊形,最后利用勾股定理得出結(jié)果.【詳解】過點(diǎn)D作DH⊥BC,交BC的延長線于點(diǎn)H,連接BD,DE,∵四邊形ABCD是平行四邊形,AB=3,∠ADC=60o,∴CD=AB=3,∠DCH=∠ABC=∠ADC=60o,∵DH⊥BC,∴∠DHC=90o,∴∠ADC+∠CDH=90°,∴∠CDH=30°,在Rt△DCH中,CH=CD=,DH=,∴,∵四邊形BCEF是平行四邊形,∴AD=BC=EF,AD∥EF,∴四邊形ADEF是平行四邊形,∴AF∥DE,AF=DE=1,∵AF⊥BE,∴DE⊥BE,∴,∴,故選D.【點(diǎn)睛】本題考查了平行四邊形的判定與性質(zhì),勾股定理,解題的關(guān)鍵是熟練運(yùn)用這些性質(zhì)解決問題.3、D【解析】【分析】由矩形的四個角是直角可判斷A,由菱形的對角線互相垂直可判斷B,由正方形的對角線相等可判斷C,由菱形的四條邊相等可判斷D,從而可得答案.【詳解】解:當(dāng)?ABCD是矩形時,∠ABC=90°,正確,故A不符合題意;當(dāng)?ABCD是菱形時,AC⊥BD,正確,故B不符合題意;當(dāng)?ABCD是正方形時,AC=BD,正確,故C不符合題意;當(dāng)?ABCD是菱形時,AB=BC,故D符合題意;故選D【點(diǎn)睛】本題考查的是矩形,菱形,正方形的性質(zhì),熟練的記憶矩形,菱形,正方形的性質(zhì)是解本題的關(guān)鍵.4、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)可得,S△BOC=S△AOD=S△COD=S△AOB=8,再根據(jù)三角形的中線平分三角形的面積可得根據(jù)三角形的中線平分三角形的面積可得S△DOE=4,進(jìn)而可得答案.【詳解】解:∵四邊形ABCD是平行四邊形,,∴S△BOC=S△AOD=S△COD=S△AOB=8,∵點(diǎn)E是CD的中點(diǎn),∴S△DOE=S△COD=4,故選:B.【點(diǎn)睛】此題主要考查了平行四邊形的性質(zhì),以及三角形中線的性質(zhì),掌握平行四邊形的性質(zhì),三角形的中線平分三角形的面積是解答本題的關(guān)鍵.5、D【解析】【分析】利用矩形的性質(zhì),求證明,進(jìn)而在中利用勾股定理求出的長度,弧長就是的長度,利用數(shù)軸上的點(diǎn)表示,求出弧與數(shù)軸交點(diǎn)表示的實(shí)數(shù)即可.【詳解】解:四邊形OABC是矩形,,在中,由勾股定理可知:,,弧長為,故在數(shù)軸上表示的數(shù)為,故選:.【點(diǎn)睛】本題主要是考查了矩形的性質(zhì)、勾股定理解三角形以及數(shù)軸上的點(diǎn)的表示,熟練利用矩形性質(zhì),得到直角三角形,然后通過勾股定理求邊長,是解決該類問題的關(guān)鍵.二、填空題1、【解析】【分析】根據(jù)平行四邊形的判定:兩組對邊分別平行的四邊形是平行四邊形即可解決問題.【詳解】解:根據(jù)兩組對邊分別平行的四邊形是平行四邊形可知:∵AB//CD,BC//AD,∴四邊形ABCD為平行四邊形.故答案為://.【點(diǎn)睛】本題考查了平行四邊形的判定,熟練掌握平行四邊形的判定方法是解題的關(guān)鍵.2、【解析】【分析】設(shè),由正方形的性質(zhì)和勾股定理求出的長,可得的長,再求出的長,得出的長,進(jìn)而可得結(jié)果.【詳解】解:設(shè),四邊形為正方形,,,點(diǎn)為的中點(diǎn),,,,,四邊形為正方形,,,故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì)以及勾股定理,解題的關(guān)鍵是熟練掌握正方形的性質(zhì),由勾股定理求出的長.3、【解析】【分析】根據(jù)矩形的性質(zhì)得到∠B=90°,根據(jù)勾股定理得到,根據(jù)折疊的性質(zhì)得到CF=AF=5,根據(jù)勾股定理即可得到結(jié)論.【詳解】解:∵四邊形ABCD是矩形,∴∠B=90°,∵AF=5,BF=3,∴,∵將矩形ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕為EF.∴CF=AF=5,∴BC=BF+CF=8,∴,故答案為:.【點(diǎn)睛】本題主要考查了矩形與折疊問題,勾股定理,解題的關(guān)鍵在于能夠熟練掌握折疊的性質(zhì).4、【解析】【分析】利用平行四邊形的知識,將的最小值轉(zhuǎn)化為的最小值,再利用勾股定理求出MC的長度,即可求解;【詳解】過點(diǎn)A作且,連接MP,∴四邊形是平行四邊形,∴,將的最小值轉(zhuǎn)化為的最小值,當(dāng)M、P、C三點(diǎn)共線時,的最小,∵,,∴,在中,;故答案是:.【點(diǎn)睛】本題主要考查了平行線的判定與性質(zhì),勾股定理,準(zhǔn)確計(jì)算是解題的關(guān)鍵.5、2##【解析】【分析】根據(jù)折疊性質(zhì)和平行四邊形的性質(zhì)可以證明△ABG≌△EAD,可得AG=DE=2,然后利用勾股定理可得求出AF的長,進(jìn)而可得GF的值.【詳解】解:如圖,GF⊥AB于點(diǎn)F,∵點(diǎn)E是CD邊上的中點(diǎn),∴CE=DE=2,由折疊可知:∠BGE=∠C,BC=BG=3,CE=GE=2,在?ABCD中,BC=AD=3,BC∥AD,∴∠D+∠C=180°,BG=AD,∵∠BGE+∠AGB=180°,∴∠AGB=∠D,∵AB∥CD,∴∠BAG=∠AED,在△ABG和△EAD中,,∴△ABG≌△EAD(AAS),∴AG=DE=2,∴AB=AE=AG+GE=4,∵GF⊥AB于點(diǎn)F,∴∠AFG=∠BFG=90°,在Rt△AFG和△BFG中,根據(jù)勾股定理,得AG2-AF2=BG2-BF2,即22-AF2=32-(4-AF)2,解得AF=,∴GF2=AG2-AF2=4-=,∴GF=,故答案為2,.【點(diǎn)睛】本題考查了折疊的性質(zhì)、平行四邊形的性質(zhì)、勾股定理等知識,證明△ABG≌△EAD是解題的關(guān)鍵.三、解答題1、見解析【分析】連接,根據(jù)平行四邊形的性質(zhì)可得AO=OC,DO=OB,由M是AO的中點(diǎn),N是CO的中點(diǎn),進(jìn)而可得MO=ON,進(jìn)而即可證明四邊形是平行四邊形,即可得證.【詳解】如圖,連接,

∵四邊形ABCD為平行四邊形,∴AO=OC,DO=OB.∵M(jìn)為AO的中點(diǎn),N為CO的中點(diǎn),即∴MO=ON.四邊形是平行四邊形,∴BM∥DN,BM=DN.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)與判定,掌握平行四邊形的性質(zhì)與判定是解題的關(guān)鍵.2、(1),2,;(2)4或5.【分析】(1)借助網(wǎng)格得出最大的無理數(shù)以及最小的無理數(shù),進(jìn)而求出即可;(2)根據(jù)要求周長邊長為的菱形即可.【詳解】解:(1)由題意得:a=,b=2,

∴;

故答案為:,2,;(2)如圖1,2中,菱形ABCD即為所求.

菱形ABCD的面積為=×4×2=4或菱形ABCD的面積=×=5,

故答案為:4或5.【點(diǎn)睛】本題考查作圖-應(yīng)用與設(shè)計(jì)作圖,無理數(shù),勾股定理,菱形的性質(zhì)等知識,解題的關(guān)鍵是理解題意,正確作出圖形解決問題.3、(1)見解析;(2)見解析;【分析】(1)根據(jù)關(guān)于軸對稱的點(diǎn)的坐標(biāo)變化作圖即可;(2)利用格點(diǎn)特征以及矩形對角線互相平分且相等的性質(zhì)取中點(diǎn)從而求解.【詳解】解:(1)如圖所示,ΔA1B1C1即為所求,(2)連接格點(diǎn),交于點(diǎn),已知、為矩形的對角線,連接,根據(jù)矩形的性質(zhì)可得點(diǎn)為線段的中點(diǎn),即為所求.【點(diǎn)睛】本題考查了網(wǎng)格作圖中的軸對稱變換和矩形的性質(zhì),解題的關(guān)鍵是掌握并運(yùn)用相關(guān)性質(zhì)進(jìn)行求解.4、(1)見解析;(2)6【分析】(1)由BC=BD,可得∠BCD=∠BDC,再由及,可得∠ECD=∠EDC,則有EC=ED,從而可得點(diǎn)B、E在線段CD的垂直平分線上,從而可得結(jié)論;(2)由D點(diǎn)是AB的中點(diǎn)及BC=BD,可得△BDC是等邊三角形,從而由30度的直角三角形的性質(zhì)可分別求得EC、BE,由AE=BE,即可求得AC的長.【詳解】(1)∵BC=BD∴∠BCD=∠BDC,點(diǎn)B在線段CD的垂直平分線上∵,∴∠BCD+∠ECD=∠EDC+∠BDC∴∠ECD=∠EDC∴EC=ED∴點(diǎn)E在線段CD的垂直平分線上∴BE是線段CD的垂直平分線(2)D點(diǎn)是AB的中點(diǎn),∠ACB=90゜∴CD是Rt△ABC斜邊上的中線∴CD=BD∴CD=BC=BD∴△BDC是等邊三角形∴∠BCD=∠DBC=60゜∴∠ECF=90゜-60゜=30゜由(1)知,BF⊥CD∴EC=2EF=2,∴BE=2EC=4∵DE⊥AB,點(diǎn)D為AB的中點(diǎn)∴AE=BE=4∴AC=AE+EC=4+2=6【點(diǎn)睛】本題考查了線段垂直平分線的性質(zhì)定理和判定定理,直角三角形斜邊上的中線的性質(zhì),30度角的直角三角形的性質(zhì),等邊三角形的判定與性質(zhì);題目雖不難,但涉及的知識點(diǎn)比較多,靈活運(yùn)用這些知識是解題的關(guān)鍵.5、(1)見解析;(2)正方形ABCD的面積為【分析】(1)由等邊三角形的性質(zhì)得EO⊥AC,即BD⊥AC,再根據(jù)對角線互相垂直的平行四邊形是菱形,即可得出結(jié)論;(2)證明菱形ABCD是正方形,即可得出答案.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AO

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論