版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江蘇省溧陽市中考數(shù)學(xué)真題分類(勾股定理)匯編必考點(diǎn)解析考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,三角形紙片ABC,AB=AC,∠BAC=90°,點(diǎn)E為AB中點(diǎn),沿過點(diǎn)E的直線折疊,使點(diǎn)B與點(diǎn)A重合,折痕現(xiàn)交于點(diǎn)F,已知EF=,則BC的長是()A. B.3 C.3 D.32、在△ABC中,,那么△ABC是(
)A.等腰三角形 B.鈍角三角形 C.直角三角形 D.等腰直角三角形3、如圖,三角形紙片ABC,點(diǎn)D是BC邊上一點(diǎn),連接AD,把△ABD沿著AD翻折,得到△AED,DE與AC交于點(diǎn)G,連接BE交AD于點(diǎn)F.若DG=GE,AF=6,BF=4,△ADG的面積為8,則點(diǎn)F到BC的距離為()A. B. C. D.4、如圖所示的網(wǎng)格是正方形網(wǎng)格,A,B,C,D是網(wǎng)格線交點(diǎn),則與的大小關(guān)系為(
)A. B. C. D.無法確定5、在直角三角形中,若勾為3,股為4,則弦為()A.5 B.6 C.7 D.86、如圖,在水塔O的東北方向24m處有一抽水站A,在水塔的東南方向18m處有一建筑工地B,在AB間建一條直水管,則水管AB的長為(
)A.40m B.45m C.30m D.35m7、我圖古代數(shù)學(xué)著作《九章算術(shù)》中有這樣一個(gè)問題:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問水深幾何?(注:丈、尺是長度單位,1丈=10尺)意思為:如圖,有一個(gè)邊長為1丈的正方形水池,在水池正中央有一根蘆葦,它高出水面1尺,如果把這根蘆葦拉向水池一邊的岸邊,它的頂端恰好碰到池邊的水面.則這根蘆葦?shù)拈L度是(
)A.5尺 B.10尺 C.12尺 D.13尺第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,在離水面高度為8米的岸上,有人用繩子拉船靠岸,開始時(shí)繩子BC的長為17米,幾分鐘后船到達(dá)點(diǎn)D的位置,此時(shí)繩子CD的長為10米,問船向岸邊移動了__米.2、附加題:觀察以下幾組勾股數(shù),并尋找規(guī)律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…請你寫出有以上規(guī)律的第⑤組勾股數(shù):________.3、如圖,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,點(diǎn)E在BC上,將△ABC沿AE折疊,使點(diǎn)B落在AC邊上的點(diǎn)B′處,則BE的長為________________.4、如圖,在中,,,,將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處;再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長線上的點(diǎn)處,兩條折痕與斜邊AB分別交于點(diǎn)E、F,則DF的長為_________.5、《九章算術(shù)》是我國古代最重要的數(shù)學(xué)著作之一,在勾股章中記載了一道“折竹抵地”問題:“今有竹高一丈,末折抵地,去本三尺,問折著高幾何?”翻譯成數(shù)學(xué)問題是:如圖所示,在ΔABC中,∠ACB=90o,AC+AB=10,BC=3,求AC的長,若設(shè)AC=x,則可列方程為________________.6、如圖,該圖形是由直角三角形和正方形構(gòu)成,其中最大正方形的邊長為7,則正方形A、B、C、D的面積之和為__________.7、如圖,在長方形ABCD中,AB=8,AD=10,點(diǎn)E為BC上一點(diǎn),將△ABE沿AE折疊,點(diǎn)B恰好落在線段DE上的點(diǎn)F處,則BE的長為______.8、在Rt△ABC中,∠C=90°,AC=9,AB=15,則點(diǎn)C到AB的距離是_______.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖所示,△ABC的兩條高AD,BE相交于點(diǎn)F,AC=BC.(1)求證:△ADC≌△BEC.(2)若CD=1,BE=2,求線段AC的長.2、如圖,有一個(gè)水池,水面是一個(gè)邊長為16尺的正方形,在水池正中央有一根蘆葦,它高出水面2尺,如果把這根蘆葦拉向水池一邊,它的頂端恰好到達(dá)池邊的水面,則水池里水的深度是多少尺?請你用所學(xué)知識解答這個(gè)問題.3、如圖②,它可以看作是由邊長為a、b、c的兩個(gè)直角三角形(如圖①C為斜邊)拼成的,其中A、C、D三點(diǎn)在同一條直線上,(1)請從面積出發(fā)寫出一個(gè)表示a、b、c的關(guān)系的等式;(要求寫出過程)(2)如圖③④⑤,以直角三角形的三邊為邊或直徑,分別向外部作正方形、半圓、等邊三角形,這三個(gè)圖形中面積關(guān)系滿足的有_______個(gè).(3)如圖⑥,直角三角形的兩直角邊長分別為3,5,分別以直角三角形的三邊為直徑作半圓,則圖中陰影部分的面積為_______.4、已知,如圖,,C為上一點(diǎn),與相交于點(diǎn)F,連接.,.(1)求證:;(2)已知,,,求的長度.5、如圖,點(diǎn)是內(nèi)一點(diǎn),把繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,且,,.(1)判斷的形狀,并說明理由;(2)求的度數(shù).6、如圖,點(diǎn)B,F(xiàn),C,E在同一條直線上,,且.(1)求證:.(2)若,,,求BE的長.7、做4個(gè)全等的直角三角形,設(shè)它們的兩條直角邊分別為a,b,斜邊為c,再做一個(gè)邊長為c的正方形,把它們按如圖的方式拼成正方形,請用這個(gè)圖證明勾股定理.-參考答案-一、單選題1、B【解析】【分析】折疊的性質(zhì)主要有:1.重疊部分全等;2.折痕是對稱軸,對稱點(diǎn)的連線被對稱軸垂直平分.由折疊的性質(zhì)可知,所以可求出∠AFB=90°,再直角三角形的性質(zhì)可知,所以,的長可求,再利用勾股定理即可求出BC的長.【詳解】解:AB=AC,,故選B.【考點(diǎn)】本題考查了折疊的性質(zhì)、等腰直角三角形的判斷和性質(zhì)以及勾股定理的運(yùn)用,求出∠AFB=90°是解題的關(guān)鍵.2、D【解析】【分析】根據(jù)等腰三角形的判定和勾股定理逆定理得出三角形的形狀即可.【詳解】∵a:b:c=1:1:,∴三角形ABC是等腰三角形.設(shè)三邊長為a,a,∵,∴三角形ABC是直角三角形.綜上所述:△ABC是等腰直角三角形.故選D.【考點(diǎn)】本題考查了等腰三角形的判定和勾股定理逆定理.此題關(guān)鍵是利用勾股定理的逆定理解答.3、C【解析】【分析】先求出△ABD的面積,根據(jù)三角形的面積公式求出DF,設(shè)點(diǎn)F到BD的距離為h,根據(jù)?BD?h=?BF?DF,求出BD即可解決問題.【詳解】解:∵DG=GE,∴S△ADG=S△AEG=8,∴S△ADE=16,由翻折可知,△ADB≌△ADE,BE⊥AD,∴S△ABD=S△ADE=16,∠BFD=90°,∴?(AF+DF)?BF=16,∴?(6+DF)×4=16,∴DF=2,∴DB=,設(shè)點(diǎn)F到BD的距離為h,則有?BD?h=?BF?DF,∴h=4×2,∴h=,∴點(diǎn)F到BC的距離為.故選:C【考點(diǎn)】此題考查了翻折變換,三角形的面積,勾股定理等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題.4、C【解析】【分析】根據(jù)每個(gè)小網(wǎng)格都為正方形,設(shè)每個(gè)網(wǎng)格為1,由勾股定理可以求出AD、AC、CD的長,再由勾股定理的逆定理得到△ACD為等腰直角三角形,同理可得△ABC為等腰直角三角形,即∠BAC=∠DAC.【詳解】解:如圖,設(shè)正方形每個(gè)網(wǎng)格的邊長都為1,連接CD、BC,則,,,,為等腰直角三角形,,同理:,,,,為等腰直角三角形,,.故選:C.【考點(diǎn)】本題考查勾股定理的性質(zhì)、勾股定理的逆定理以及等腰直角三角形的判定,解本題的關(guān)鍵要掌握勾股定理及逆定理的基本知識.5、A【解析】【分析】直接根據(jù)勾股定理求解即可.【詳解】解:∵在直角三角形中,勾為3,股為4,∴弦為,故選A.【考點(diǎn)】本題考查了勾股定理,熟練掌握勾股定理是解題的關(guān)鍵.6、C【解析】【分析】由題意可知東北方向和東南方向間剛好是一直角,利用勾股定理解圖中直角三角形即可.【詳解】解:∵OA是東北方向,OB是東南方向,∴∠AOB=90°,又∵OA=24m,OB=18m,∴30m.故選:C.【考點(diǎn)】本題考查的知識點(diǎn)是解直角三角形的應(yīng)用,正確運(yùn)用勾股定理,善于觀察題目的信息是解題以及學(xué)好數(shù)學(xué)的關(guān)鍵.7、D【解析】【分析】依題意,蘆葦?shù)拈L度為直角三角形的斜邊,水深為一直角邊,另一直角邊為5尺,由勾股定理即可列出方程,進(jìn)而得到答案.【詳解】解:設(shè)水深x尺,則蘆葦?shù)拈L度為(x+1)尺,依題意,由勾股定理,得:,解得,所以蘆葦?shù)拈L度為13尺.故選D.【考點(diǎn)】本題考查勾股定理的應(yīng)用,將題目描述問題轉(zhuǎn)化成直角三角形求邊長的問題是解題的關(guān)鍵.二、填空題1、9.【解析】【分析】在Rt△ABC中,利用勾股定理計(jì)算出AB長,再根據(jù)題意可得CD長,然后再次利用勾股定理計(jì)算出AD長,再利用BD=AB-AD可得BD長.【詳解】在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸邊移動了9米,故答案為:9.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,關(guān)鍵是掌握從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會數(shù)形結(jié)合的思想的應(yīng)用.2、11,60,61【解析】【分析】由所給勾股數(shù)發(fā)現(xiàn)第一個(gè)數(shù)是奇數(shù),且逐步遞增2,知第5組第一個(gè)數(shù)是11,第二、第三個(gè)數(shù)相差為1,設(shè)第二個(gè)數(shù)為x,則第三個(gè)數(shù)為,由勾股定理得:,計(jì)算求解即可.【詳解】解:由所給勾股數(shù)發(fā)現(xiàn)第一個(gè)數(shù)是奇數(shù),且逐步遞增2,∴知第5組第一個(gè)數(shù)是11,第二、第三個(gè)數(shù)相差為1,設(shè)第二個(gè)數(shù)為x,則第三個(gè)數(shù)為,由勾股定理得:,解得x=60,∴第5組數(shù)是:11、60、61故答案為:11、60、61.【考點(diǎn)】本題考查了數(shù)字類規(guī)律,勾股定理等知識.解題的關(guān)鍵在于推導(dǎo)規(guī)律.3、.【解析】【分析】首先根據(jù)勾股定理求出BC的長,根據(jù)折疊性質(zhì),可得=AB=3,=BE,∠B=∠=90°,然后設(shè)BE=,根據(jù)勾股定理,列出,求解即可.【詳解】解:∵∠ABC=90°,AB=3,AC=5,在Rt△ABC中,,將△ABC沿AE折疊,∴=AB=3,=BE,∠B=∠=90°,則,設(shè)BE=,EC=4-,,在Rt△中,由勾股定理得:,即,解得,∴BE=.故答案為.【考點(diǎn)】本題主要考查了翻折變換的性質(zhì)及勾股定理的應(yīng)用;解題的關(guān)鍵是準(zhǔn)確找出圖形中隱含的相等關(guān)系.4、【解析】【分析】根據(jù)折疊的性質(zhì)可得,,從而得出相應(yīng)角相等,再根據(jù)角之間的關(guān)系得出,從而得出為等腰直角三角形,再根據(jù)勾股定理求出的長度,利用三角形的面積公式求出的長度,再求出、的長度,最后求出的長度.【詳解】解:∵邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處,∴,∴,,,∵邊BC沿CF翻折,使點(diǎn)B落在CD的延長線上的點(diǎn)處,∴,∴,∵,∴,∴為等腰直角三角形,∴,∵,,,∴,∵,∴,∴,∴.故答案為:.【考點(diǎn)】本題主要考查了圖形的翻折變化,勾股定理的運(yùn)用,等腰直角三角形的判定,根據(jù)折疊的性質(zhì)求得相應(yīng)的角是解答本題的關(guān)鍵.5、【解析】【分析】設(shè)AC=x,則AB=10-x,再由即可列出方程.【詳解】解:∵,且,∴,在Rt△ABC中,由勾股定理有:,即:,故可列出的方程為:,故答案為:.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,熟練掌握勾股定理是解決本題的關(guān)鍵.6、49【解析】【分析】根據(jù)正方形A,B,C,D的面積和等于最大的正方形的面積,求解即可求出答案.【詳解】如圖對所給圖形進(jìn)行標(biāo)注:因?yàn)樗械娜切味际侵苯侨切?,所有的四邊形都是正方形,所以正方形A的面積,正方形B的面積,正方形C的面積,正方形D的面積.因?yàn)椋?,所以正方形A,B,C,D的面積和.故答案為:49.【考點(diǎn)】本題主要考查了勾股定理、正方形的性質(zhì),面積的計(jì)算,掌握勾股定理是解本題的關(guān)鍵.7、【解析】【分析】設(shè),則,由折疊的性質(zhì)可知,,在中利用勾股定理表示出,在中,利用勾股定理列方程求解.【詳解】解:設(shè),則,由折疊的性質(zhì)可知,,,.在中,,.在中,,即,解得.的長為.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,折疊的性質(zhì),熟練掌握勾股定理是解題的關(guān)鍵.8、【解析】【分析】首先根據(jù)勾股定理求出直角邊BC的長,再根據(jù)三角形的面積為定值即可求出則點(diǎn)C到AB的距離【詳解】在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2∵AC=9,BC=12,∴AB=在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2,∵AC=9,AB=15,∴BC==12,∵S△ABC=AC?BC=AB?h,∴h==故答案為【考點(diǎn)】本題考查了勾股定理,熟知在任何一個(gè)直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解題的關(guān)鍵三、解答題1、(1)見解析(2)【解析】【分析】(1)由AD⊥BC,BE⊥AC得∠BEC=∠ADC=90°,可證∠DAC=∠CBE,根據(jù)AAS可證△ADC≌△BEC;(2)由△ADC≌△BEC,得CD=CE=1,根據(jù)勾股定理可求.(1)證明:∵AD⊥BC,BE⊥AC,∴∠BEC=∠ADC=90°∴∠C+∠DAC=90°=∠C+∠CBE,∴∠DAC=∠CBE在△ADC和△BEC中,∴△ADC≌△BEC(AAS);(2)解:∵△ADC≌△BEC,∴CD=CE=1,∴BC===,∴AC=BC=【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),勾股定理,熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.2、水池里水的深度是15尺【解析】【分析】根據(jù)勾股定理列出方程,解方程即可.【詳解】解:設(shè)水池里水的深度是x尺,由題意得,,解得:x=l5,答:水池里水的深度是15尺.【考點(diǎn)】本題考查的是勾股定理的應(yīng)用,掌握勾股定理、根據(jù)勾股定理正確列出方程是解題的關(guān)鍵.3、(1)(2)3(3)7.5【解析】【分析】(1)梯形的面積等于三個(gè)直角三角形的面積的和.即可得:;(2)根據(jù)勾股定理可得三個(gè)圖形中面積關(guān)系滿足的有3個(gè);(3)根據(jù)半圓面積和勾股定理即可得結(jié)論:,進(jìn)而求解.(1)解:四邊形ABED的面積可以表示為:,也可以表示為,所以,整理得;(2)設(shè)直角三角形的三條邊按照從小到大分別為a,b,c,則,圖③,∵,∴,圖④,∵∴,圖⑤,∵∴,故答案為:3.(3)∵,∴,∵,∴.【考點(diǎn)】本題考查了勾股定理的證
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 測試工程師自動化方向面試題及答案
- 金融風(fēng)險(xiǎn)管理師應(yīng)聘攻略及知識考點(diǎn)詳解
- 區(qū)塊鏈工程師金融面試題及答案
- 內(nèi)容運(yùn)營崗位試題庫與解題技巧介紹
- 2025年5G智能制造系統(tǒng)項(xiàng)目可行性研究報(bào)告
- 2026屆河南省新鄉(xiāng)市高三上學(xué)期12月月考?xì)v史試題(含答案)
- 2025年家庭寵物護(hù)理中心項(xiàng)目可行性研究報(bào)告
- 2025年中央空調(diào)節(jié)能技術(shù)應(yīng)用項(xiàng)目可行性研究報(bào)告
- 2025年增材制造技術(shù)項(xiàng)目可行性研究報(bào)告
- 2025年文化創(chuàng)意產(chǎn)業(yè)發(fā)展可行性研究報(bào)告
- 鐵路工程道砟購銷
- 2024年廣東省廣州市中考?xì)v史真題(原卷版)
- 壯醫(yī)藥線療法
- 超星爾雅學(xué)習(xí)通《中國古代史(中央民族大學(xué))》2024章節(jié)測試答案
- 項(xiàng)目4任務(wù)1-斷路器開關(guān)特性試驗(yàn)
- 編輯打印新課標(biāo)高考英語詞匯表3500詞
- (高清版)DZT 0215-2020 礦產(chǎn)地質(zhì)勘查規(guī)范 煤
- 高層建筑消防安全培訓(xùn)課件
- 實(shí)驗(yàn)診斷學(xué)病例分析【范本模板】
- 西安交大少年班真題
- JJF(石化)006-2018漆膜彈性測定器校準(zhǔn)規(guī)范
評論
0/150
提交評論