版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年人教版七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題綜合復(fù)習(xí)題一、解答題1.教材中的探究:如圖,把兩個(gè)邊長(zhǎng)為1的小正方形沿對(duì)角線剪開(kāi),用所得到的4個(gè)直角三角形拼成一個(gè)面積為2的大正方形.由此,得到了一種能在數(shù)軸上畫(huà)出無(wú)理數(shù)對(duì)應(yīng)點(diǎn)的方法(數(shù)軸的單位長(zhǎng)度為1).(1)閱讀理解:圖1中大正方形的邊長(zhǎng)為_(kāi)_______,圖2中點(diǎn)A表示的數(shù)為_(kāi)_______;(2)遷移應(yīng)用:請(qǐng)你參照上面的方法,把5個(gè)小正方形按圖3位置擺放,并將其進(jìn)行裁剪,拼成一個(gè)大正方形.①請(qǐng)?jiān)趫D3中畫(huà)出裁剪線,并在圖3中畫(huà)出所拼得的大正方形的示意圖.②利用①中的成果,在圖4的數(shù)軸上分別標(biāo)出表示數(shù)-0.5以及的點(diǎn),并比較它們的大?。?.動(dòng)手試一試,如圖1,紙上有10個(gè)邊長(zhǎng)為1的小正方形組成的圖形紙.我們可以按圖2的虛線將它剪開(kāi)后,重新拼成一個(gè)大正方形.(1)基礎(chǔ)鞏固:拼成的大正方形的面積為_(kāi)_____,邊長(zhǎng)為_(kāi)_____;(2)知識(shí)運(yùn)用:如圖3所示,將圖2水平放置在數(shù)軸上,使得頂點(diǎn)B與數(shù)軸上的重合.以點(diǎn)B為圓心,邊為半徑畫(huà)圓弧,交數(shù)軸于點(diǎn)E,則點(diǎn)E表示的數(shù)是______;(3)變式拓展:①如圖4,給定的方格紙(每個(gè)小正方形邊長(zhǎng)為1),你能從中剪出一個(gè)面積為13的正方形嗎?若能,請(qǐng)?jiān)趫D中畫(huà)出示意圖;②請(qǐng)你利用①中圖形在數(shù)軸上用直尺和圓規(guī)表示面積為13的正方形邊長(zhǎng)所表示的數(shù).3.有一塊面積為100cm2的正方形紙片.(1)該正方形紙片的邊長(zhǎng)為cm(直接寫(xiě)出結(jié)果);(2)小麗想沿著該紙片邊的方向裁剪出一塊面積為90cm2的長(zhǎng)方形紙片,使它的長(zhǎng)寬之比為4:3.小麗能用這塊紙片裁剪出符合要求的紙片嗎?4.小麗想用一塊面積為400cm2的正方形紙片,沿著邊的方向裁處一塊面積為300cm2的長(zhǎng)方形紙片.(1)請(qǐng)幫小麗設(shè)計(jì)一種可行的裁剪方案;(2)若使長(zhǎng)方形的長(zhǎng)寬之比為3:2,小麗能用這塊紙片裁處符合要求的紙片嗎?若能,請(qǐng)幫小麗設(shè)計(jì)一種裁剪方案,若不能,請(qǐng)簡(jiǎn)要說(shuō)明理由.5.如圖用兩個(gè)邊長(zhǎng)為cm的小正方形紙片拼成一個(gè)大的正方形紙片,沿著大正方形紙片的邊的方向截出一個(gè)長(zhǎng)方形紙片,能否使截得的長(zhǎng)方形紙片長(zhǎng)寬之比為,且面積為cm2?請(qǐng)說(shuō)明理由.二、解答題6.已知,AB∥CD,點(diǎn)E為射線FG上一點(diǎn).(1)如圖1,若∠EAF=25°,∠EDG=45°,則∠AED=.(2)如圖2,當(dāng)點(diǎn)E在FG延長(zhǎng)線上時(shí),此時(shí)CD與AE交于點(diǎn)H,則∠AED、∠EAF、∠EDG之間滿(mǎn)足怎樣的關(guān)系,請(qǐng)說(shuō)明你的結(jié)論;(3)如圖3,當(dāng)點(diǎn)E在FG延長(zhǎng)線上時(shí),DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度數(shù).7.綜合與實(shí)踐課上,同學(xué)們以“一個(gè)直角三角形和兩條平行線”為背景開(kāi)展數(shù)學(xué)活動(dòng),如圖,已知兩直線,且是直角三角形,,操作發(fā)現(xiàn):(1)如圖1.若,求的度數(shù);(2)如圖2,若的度數(shù)不確定,同學(xué)們把直線向上平移,并把的位置改變,發(fā)現(xiàn),請(qǐng)說(shuō)明理由.(3)如圖3,若∠A=30°,平分,此時(shí)發(fā)現(xiàn)與又存在新的數(shù)量關(guān)系,請(qǐng)寫(xiě)出與的數(shù)量關(guān)系并說(shuō)明理由.8.已知AB∥CD,∠ABE與∠CDE的角分線相交于點(diǎn)F.(1)如圖1,若BM、DM分別是∠ABF和∠CDF的角平分線,且∠BED=100°,求∠M的度數(shù);(2)如圖2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度數(shù);(3)若∠ABM=∠ABF,∠CDM=∠CDF,請(qǐng)直接寫(xiě)出∠M與∠BED之間的數(shù)量關(guān)系9.已知:AB∥CD,截線MN分別交AB、CD于點(diǎn)M、N.(1)如圖①,點(diǎn)B在線段MN上,設(shè)∠EBM=α°,∠DNM=β°,且滿(mǎn)足+(β﹣60)2=0,求∠BEM的度數(shù);(2)如圖②,在(1)的條件下,射線DF平分∠CDE,且交線段BE的延長(zhǎng)線于點(diǎn)F;請(qǐng)寫(xiě)出∠DEF與∠CDF之間的數(shù)量關(guān)系,并說(shuō)明理由;(3)如圖③,當(dāng)點(diǎn)P在射線NT上運(yùn)動(dòng)時(shí),∠DCP與∠BMT的平分線交于點(diǎn)Q,則∠Q與∠CPM的比值為(直接寫(xiě)出答案).10.如圖,已知,是的平分線.(1)若平分,求的度數(shù);(2)若在的內(nèi)部,且于,求證:平分;(3)在(2)的條件下,過(guò)點(diǎn)作,分別交、于點(diǎn)、,繞著點(diǎn)旋轉(zhuǎn),但與、始終有交點(diǎn),問(wèn):的值是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍.三、解答題11.如圖,已知是直線間的一點(diǎn),于點(diǎn)交于點(diǎn).(1)求的度數(shù);(2)如圖2,射線從出發(fā),以每秒的速度繞P點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn),當(dāng)垂直時(shí),立刻按原速返回至后停止運(yùn)動(dòng):射線從出發(fā),以每秒的速度繞E點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)至后停止運(yùn)動(dòng),若射線,射線同時(shí)開(kāi)始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)間為t秒.①當(dāng)時(shí),求的度數(shù);②當(dāng)時(shí),求t的值.12.已知,如圖①,∠BAD=50°,點(diǎn)C為射線AD上一點(diǎn)(不與A重合),連接BC.(1)[問(wèn)題提出]如圖②,AB∥CE,∠BCD=73°,則:∠B=.(2)[類(lèi)比探究]在圖①中,探究∠BAD、∠B和∠BCD之間有怎樣的數(shù)量關(guān)系?并用平行線的性質(zhì)說(shuō)明理由.(3)[拓展延伸]如圖③,在射線BC上取一點(diǎn)O,過(guò)O點(diǎn)作直線MN使MN∥AD,BE平分∠ABC交AD于E點(diǎn),OF平分∠BON交AD于F點(diǎn),交AD于G點(diǎn),當(dāng)C點(diǎn)沿著射線AD方向運(yùn)動(dòng)時(shí),∠FOG的度數(shù)是否會(huì)變化?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求出這個(gè)不變的值.13.已知,交AC于點(diǎn)E,交AB于點(diǎn)F.(1)如圖1,若點(diǎn)D在邊BC上,①補(bǔ)全圖形;②求證:.(2)點(diǎn)G是線段AC上的一點(diǎn),連接FG,DG.①若點(diǎn)G是線段AE的中點(diǎn),請(qǐng)你在圖2中補(bǔ)全圖形,判斷,,之間的數(shù)量關(guān)系,并證明;②若點(diǎn)G是線段EC上的一點(diǎn),請(qǐng)你直接寫(xiě)出,,之間的數(shù)量關(guān)系.14.已知,直角的邊與直線a分別相交于O、G兩點(diǎn),與直線b分別交于E、F點(diǎn),.(1)將直角如圖1位置擺放,如果,則______;(2)將直角如圖2位置擺放,N為AC上一點(diǎn),,請(qǐng)寫(xiě)出與之間的等量關(guān)系,并說(shuō)明理由.(3)將直角如圖3位置擺放,若,延長(zhǎng)AC交直線b于點(diǎn)Q,點(diǎn)P是射線GF上一動(dòng)點(diǎn),探究,與的數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出結(jié)論.15.綜合與探究綜合與實(shí)踐課上,同學(xué)們以“一個(gè)含角的直角三角尺和兩條平行線”為背景開(kāi)展數(shù)學(xué)活動(dòng),如圖,已知兩直線,,且,三角形是直角三角形,,,操作發(fā)現(xiàn):(1)如圖1.,求的度數(shù);(2)如圖2.創(chuàng)新小組的同學(xué)把直線向上平移,并把的位置改變,發(fā)現(xiàn),請(qǐng)說(shuō)明理由.實(shí)踐探究:(3)填密小組在創(chuàng)新小組發(fā)現(xiàn)的結(jié)論的基礎(chǔ)上,將圖2中的圖形繼續(xù)變化得到圖3,平分,此時(shí)發(fā)現(xiàn)與又存在新的數(shù)量關(guān)系,請(qǐng)寫(xiě)出與的數(shù)量關(guān)系并說(shuō)明理由.四、解答題16.在△ABC中,射線AG平分∠BAC交BC于點(diǎn)G,點(diǎn)D在BC邊上運(yùn)動(dòng)(不與點(diǎn)G重合),過(guò)點(diǎn)D作DE∥AC交AB于點(diǎn)E.(1)如圖1,點(diǎn)D在線段CG上運(yùn)動(dòng)時(shí),DF平分∠EDB①若∠BAC=100°,∠C=30°,則∠AFD=;若∠B=40°,則∠AFD=;②試探究∠AFD與∠B之間的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;(2)點(diǎn)D在線段BG上運(yùn)動(dòng)時(shí),∠BDE的角平分線所在直線與射線AG交于點(diǎn)F試探究∠AFD與∠B之間的數(shù)量關(guān)系,并說(shuō)明理由17.如圖,在中,是高,是角平分線,,.()求、和的度數(shù).()若圖形發(fā)生了變化,已知的兩個(gè)角度數(shù)改為:當(dāng),,則__________.當(dāng),時(shí),則__________.當(dāng),時(shí),則__________.當(dāng),時(shí),則__________.()若和的度數(shù)改為用字母和來(lái)表示,你能找到與和之間的關(guān)系嗎?請(qǐng)直接寫(xiě)出你發(fā)現(xiàn)的結(jié)論.18.小明在學(xué)習(xí)過(guò)程中,對(duì)教材中的一個(gè)有趣問(wèn)題做如下探究:(習(xí)題回顧)已知:如圖1,在中,,是角平分線,是高,、相交于點(diǎn).求證:;(變式思考)如圖2,在中,,是邊上的高,若的外角的平分線交的延長(zhǎng)線于點(diǎn),其反向延長(zhǎng)線與邊的延長(zhǎng)線交于點(diǎn),則與還相等嗎?說(shuō)明理由;(探究延伸)如圖3,在中,上存在一點(diǎn),使得,的平分線交于點(diǎn).的外角的平分線所在直線與的延長(zhǎng)線交于點(diǎn).直接寫(xiě)出與的數(shù)量關(guān)系.19.在中,射線平分交于點(diǎn),點(diǎn)在邊上運(yùn)動(dòng)(不與點(diǎn)重合),過(guò)點(diǎn)作交于點(diǎn).(1)如圖1,點(diǎn)在線段上運(yùn)動(dòng)時(shí),平分.①若,,則_____;若,則_____;②試探究與之間的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;(2)點(diǎn)在線段上運(yùn)動(dòng)時(shí),的角平分線所在直線與射線交于點(diǎn).試探究與之間的數(shù)量關(guān)系,并說(shuō)明理由.20.如果三角形的兩個(gè)內(nèi)角與滿(mǎn)足,那么我們稱(chēng)這樣的三角形是“準(zhǔn)互余三角形”.(1)如圖1,在中,,是的角平分線,求證:是“準(zhǔn)互余三角形”;(2)關(guān)于“準(zhǔn)互余三角形”,有下列說(shuō)法:①在中,若,,,則是“準(zhǔn)互余三角形”;②若是“準(zhǔn)互余三角形”,,,則;③“準(zhǔn)互余三角形”一定是鈍角三角形.其中正確的結(jié)論是___________(填寫(xiě)所有正確說(shuō)法的序號(hào));(3)如圖2,,為直線上兩點(diǎn),點(diǎn)在直線外,且.若是直線上一點(diǎn),且是“準(zhǔn)互余三角形”,請(qǐng)直接寫(xiě)出的度數(shù).【參考答案】一、解答題1.(1);(2)①見(jiàn)解析;②見(jiàn)解析,【分析】(1)設(shè)正方形邊長(zhǎng)為a,根據(jù)正方形面積公式,結(jié)合平方根的運(yùn)算求出a值,則知結(jié)果;(2)①根據(jù)面積相等,利用割補(bǔ)法裁剪后拼得如圖所示的正方形;②解析:(1);(2)①見(jiàn)解析;②見(jiàn)解析,【分析】(1)設(shè)正方形邊長(zhǎng)為a,根據(jù)正方形面積公式,結(jié)合平方根的運(yùn)算求出a值,則知結(jié)果;(2)①根據(jù)面積相等,利用割補(bǔ)法裁剪后拼得如圖所示的正方形;②由題(1)的原理得出大正方形的邊長(zhǎng)為,然后在數(shù)軸上以-3為圓心,以大正方形的邊長(zhǎng)為半徑畫(huà)弧交數(shù)軸的右方與一點(diǎn)M,再把N點(diǎn)表示出來(lái),即可比較它們的大小.【詳解】解:設(shè)正方形邊長(zhǎng)為a,∵a2=2,∴a=,故答案為:,;(2)解:①裁剪后拼得的大正方形如圖所示:②設(shè)拼成的大正方形的邊長(zhǎng)為b,∴b2=5,∴b=±,在數(shù)軸上以-3為圓心,以大正方形的邊長(zhǎng)為半徑畫(huà)弧交數(shù)軸的右方與一點(diǎn)M,則M表示的數(shù)為-3+,看圖可知,表示-0.5的N點(diǎn)在M點(diǎn)的右方,∴比較大?。海军c(diǎn)睛】本題主要考查平方根與算術(shù)平方根的應(yīng)用及實(shí)數(shù)的大小比較,熟練掌握平方根與算術(shù)平方根的意義及實(shí)數(shù)的大小比較是解題的關(guān)鍵.2.(1)10,;(2);(3)見(jiàn)解析;(4)見(jiàn)解析【分析】(1)易得10個(gè)小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術(shù)平方根即可為大正方形的邊長(zhǎng);(2)根據(jù)大正方形的邊長(zhǎng)結(jié)合實(shí)解析:(1)10,;(2);(3)見(jiàn)解析;(4)見(jiàn)解析【分析】(1)易得10個(gè)小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術(shù)平方根即可為大正方形的邊長(zhǎng);(2)根據(jù)大正方形的邊長(zhǎng)結(jié)合實(shí)數(shù)與數(shù)軸的關(guān)系可得結(jié)果;(3)以2×3的長(zhǎng)方形的對(duì)角線為邊長(zhǎng)即可畫(huà)出圖形;(4)得到①中正方形的邊長(zhǎng),再利用實(shí)數(shù)與數(shù)軸的關(guān)系可畫(huà)出圖形.【詳解】解:(1)∵圖1中有10個(gè)小正方形,∴面積為10,邊長(zhǎng)AD為;(2)∵BC=,點(diǎn)B表示的數(shù)為-1,∴BE=,∴點(diǎn)E表示的數(shù)為;(3)①如圖所示:②∵正方形面積為13,∴邊長(zhǎng)為,如圖,點(diǎn)E表示面積為13的正方形邊長(zhǎng).【點(diǎn)睛】本題考查了圖形的剪拼,正方形的面積,算術(shù)平方根,實(shí)數(shù)與數(shù)軸,巧妙地根據(jù)網(wǎng)格的特點(diǎn)畫(huà)出正方形是解此題的關(guān)鍵.3.(1)10;(2)小麗不能用這塊紙片裁出符合要求的紙片.【分析】(1)根據(jù)算術(shù)平方根的定義直接得出;(2)直接利用算術(shù)平方根的定義長(zhǎng)方形紙片的長(zhǎng)與寬,進(jìn)而得出答案.【詳解】解:(1)根據(jù)算解析:(1)10;(2)小麗不能用這塊紙片裁出符合要求的紙片.【分析】(1)根據(jù)算術(shù)平方根的定義直接得出;(2)直接利用算術(shù)平方根的定義長(zhǎng)方形紙片的長(zhǎng)與寬,進(jìn)而得出答案.【詳解】解:(1)根據(jù)算術(shù)平方根定義可得,該正方形紙片的邊長(zhǎng)為10cm;故答案為:10;(2)∵長(zhǎng)方形紙片的長(zhǎng)寬之比為4:3,∴設(shè)長(zhǎng)方形紙片的長(zhǎng)為4xcm,則寬為3xcm,則4x?3x=90,∴12x2=90,∴x2=,解得:x=或x=-(負(fù)值不符合題意,舍去),∴長(zhǎng)方形紙片的長(zhǎng)為2cm,∵5<<6,∴10<2,∴小麗不能用這塊紙片裁出符合要求的紙片.【點(diǎn)睛】本題考查了算術(shù)平方根.解題的關(guān)鍵是掌握算術(shù)平方根的定義:一個(gè)正數(shù)的正的平方根叫這個(gè)數(shù)的算術(shù)平方根;0的算術(shù)平方根為0.也考查了估算無(wú)理數(shù)的大?。?.(1)可以以正方形一邊為長(zhǎng)方形的長(zhǎng),在其鄰邊上截取長(zhǎng)為15cm的線段作為寬即可裁出符合要求的長(zhǎng)方形;(2)不能,理由見(jiàn)解析.【解析】(1)解:設(shè)面積為400cm2的正方形紙片的邊長(zhǎng)為acm∴解析:(1)可以以正方形一邊為長(zhǎng)方形的長(zhǎng),在其鄰邊上截取長(zhǎng)為15cm的線段作為寬即可裁出符合要求的長(zhǎng)方形;(2)不能,理由見(jiàn)解析.【解析】(1)解:設(shè)面積為400cm2的正方形紙片的邊長(zhǎng)為acm∴a2=400又∵a>0∴a=20又∵要裁出的長(zhǎng)方形面積為300cm2∴若以原正方形紙片的邊長(zhǎng)為長(zhǎng)方形的長(zhǎng),則長(zhǎng)方形的寬為:300÷20=15(cm)∴可以以正方形一邊為長(zhǎng)方形的長(zhǎng),在其鄰邊上截取長(zhǎng)為15cm的線段作為寬即可裁出符合要求的長(zhǎng)方形(2)∵長(zhǎng)方形紙片的長(zhǎng)寬之比為3:2∴設(shè)長(zhǎng)方形紙片的長(zhǎng)為3xcm,則寬為2xcm∴6x2=300∴x2=50又∵x>0∴x=∴長(zhǎng)方形紙片的長(zhǎng)為又∵>202即:>20∴小麗不能用這塊紙片裁出符合要求的紙片5.不能截得長(zhǎng)寬之比為,且面積為cm2的長(zhǎng)方形紙片,見(jiàn)解析【分析】根據(jù)拼圖求出大正方形的邊長(zhǎng),再根據(jù)長(zhǎng)方形的長(zhǎng)、寬之比為3:2,計(jì)算長(zhǎng)方形的長(zhǎng)與寬進(jìn)行驗(yàn)證即可.【詳解】解:不能,因?yàn)榇笳叫渭埥馕觯翰荒芙氐瞄L(zhǎng)寬之比為,且面積為cm2的長(zhǎng)方形紙片,見(jiàn)解析【分析】根據(jù)拼圖求出大正方形的邊長(zhǎng),再根據(jù)長(zhǎng)方形的長(zhǎng)、寬之比為3:2,計(jì)算長(zhǎng)方形的長(zhǎng)與寬進(jìn)行驗(yàn)證即可.【詳解】解:不能,因?yàn)榇笳叫渭埰拿娣e為()2+()2=36(cm2),所以大正方形的邊長(zhǎng)為6cm,設(shè)截出的長(zhǎng)方形的長(zhǎng)為3bcm,寬為2bcm,則6b2=30,所以b=(取正值),所以3b=3=>,所以不能截得長(zhǎng)寬之比為3:2,且面積為30cm2的長(zhǎng)方形紙片.【點(diǎn)睛】本題考查了算術(shù)平方根,理解算術(shù)平方根的意義是正確解答的關(guān)鍵.二、解答題6.(1)70°;(2),證明見(jiàn)解析;(3)122°【分析】(1)過(guò)作,根據(jù)平行線的性質(zhì)得到,,即可求得;(2)過(guò)過(guò)作,根據(jù)平行線的性質(zhì)得到,,即;(3)設(shè),則,通過(guò)三角形內(nèi)角和得到,由角平分線解析:(1)70°;(2),證明見(jiàn)解析;(3)122°【分析】(1)過(guò)作,根據(jù)平行線的性質(zhì)得到,,即可求得;(2)過(guò)過(guò)作,根據(jù)平行線的性質(zhì)得到,,即;(3)設(shè),則,通過(guò)三角形內(nèi)角和得到,由角平分線定義及得到,求出的值再通過(guò)三角形內(nèi)角和求.【詳解】解:(1)過(guò)作,,,,,,故答案為:;(2).理由如下:過(guò)作,,,,,,,;(3),設(shè),則,,,又,,,平分,,,,即,解得,,.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)和判定,正確做出輔助線是解決問(wèn)題的關(guān)鍵.7.(1)42°;(2)見(jiàn)解析;(3)∠1=∠2,理由見(jiàn)解析【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過(guò)點(diǎn)B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°解析:(1)42°;(2)見(jiàn)解析;(3)∠1=∠2,理由見(jiàn)解析【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過(guò)點(diǎn)B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°,∠1=∠DBC,則∠ABD=∠ABC-∠DBC=60°-∠1,進(jìn)而得出結(jié)論;(3)過(guò)點(diǎn)C
作CP∥a,由角平分線定義得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行線的性質(zhì)得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出結(jié)論.【詳解】解:(1)∵∠1=48°,∠BCA=90°,∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°,∵a∥b,∴∠2=∠3=42°;(2)理由如下:過(guò)點(diǎn)B作BD∥a.如圖2所示:則∠2+∠ABD=180°,∵a∥b,∴b∥BD,∴∠1=∠DBC,∴∠ABD=∠ABC-∠DBC=60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:過(guò)點(diǎn)C
作CP∥a,如圖3所示:∵AC平分∠BAM∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,又∵a∥b,∴CP∥b,∠1=∠BAM=60°,∴∠PCA=∠CAM=30°,∴∠BCP=∠BCA-∠PCA=90°-30°=60°,又∵CP∥a,∴∠2=∠BCP=60°,∴∠1=∠2.【點(diǎn)睛】本題是三角形綜合題目,考查了平移的性質(zhì)、直角三角形的性質(zhì)、平行線的判定與性質(zhì)、角平分線定義、平角的定義等知識(shí);本題綜合性強(qiáng),熟練掌握平移的性質(zhì)和平行線的性質(zhì)是解題的關(guān)鍵.8.(1)65°;(2);(3)2n∠M+∠BED=360°【分析】(1)首先作EG∥AB,F(xiàn)H∥AB,連結(jié)MF,利用平行線的性質(zhì)可得∠ABE+∠CDE=260°,再利用角平分線的定義得到∠ABF+解析:(1)65°;(2);(3)2n∠M+∠BED=360°【分析】(1)首先作EG∥AB,F(xiàn)H∥AB,連結(jié)MF,利用平行線的性質(zhì)可得∠ABE+∠CDE=260°,再利用角平分線的定義得到∠ABF+∠CDF=130°,從而得到∠BFD的度數(shù),再根據(jù)角平分線的定義和三角形外角的性質(zhì)可求∠M的度數(shù);(2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠BED,∠M=∠ABM+∠CDM,等量代換即可求解;(3)由(2)的方法可得到2n∠M+∠BED=360°.【詳解】解:(1)如圖1,作,,連結(jié),,,,,,,,,,和的角平分線相交于,,,、分別是和的角平分線,,,,;(2)如圖1,,,,,與兩個(gè)角的角平分線相交于點(diǎn),,,,,,;(3)由(2)結(jié)論可得,,,則.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)和四邊形的內(nèi)角和,關(guān)鍵在于掌握兩直線平行同位角相等,內(nèi)錯(cuò)角相等,同旁?xún)?nèi)角互補(bǔ)的性質(zhì).9.(1)30°;(2)∠DEF+2∠CDF=150°,理由見(jiàn)解析;(3)【分析】(1)由非負(fù)性可求α,β的值,由平行線的性質(zhì)和外角性質(zhì)可求解;(2)過(guò)點(diǎn)E作直線EH∥AB,由角平分線的性質(zhì)和平行解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由見(jiàn)解析;(3)【分析】(1)由非負(fù)性可求α,β的值,由平行線的性質(zhì)和外角性質(zhì)可求解;(2)過(guò)點(diǎn)E作直線EH∥AB,由角平分線的性質(zhì)和平行線的性質(zhì)可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的數(shù)量可求解;(3)由平行線的性質(zhì)和外角性質(zhì)可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.【詳解】解:(1)∵+(β﹣60)2=0,∴α=30,β=60,∵AB∥CD,∴∠AMN=∠MND=60°,∵∠AMN=∠B+∠BEM=60°,∴∠BEM=60°﹣30°=30°;(2)∠DEF+2∠CDF=150°.理由如下:過(guò)點(diǎn)E作直線EH∥AB,∵DF平分∠CDE,∴設(shè)∠CDF=∠EDF=x°;∵EH∥AB,∴∠DEH=∠EDC=2x°,∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;∴∠DEF=150°﹣2∠CDF,即∠DEF+2∠CDF=150°;(3)如圖3,設(shè)MQ與CD交于點(diǎn)E,∵M(jìn)Q平分∠BMT,QC平分∠DCP,∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,∵AB∥CD,∴∠BME=∠MEC,∠BMP=∠PND,∵∠MEC=∠Q+∠DCQ,∴2∠MEC=2∠Q+2∠DCQ,∴∠PMB=2∠Q+∠PCD,∵∠PND=∠PCD+∠CPM=∠PMB,∴∠CPM=2∠Q,∴∠Q與∠CPM的比值為,故答案為:.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)、角平分線的性質(zhì),準(zhǔn)確計(jì)算是解題的關(guān)鍵.10.(1)90°;(2)見(jiàn)解析;(3)不變,180°【分析】(1)根據(jù)鄰補(bǔ)角的定義及角平分線的定義即可得解;(2)根據(jù)垂直的定義及鄰補(bǔ)角的定義、角平分線的定義即可得解;(3),過(guò),分別作,,根據(jù)解析:(1)90°;(2)見(jiàn)解析;(3)不變,180°【分析】(1)根據(jù)鄰補(bǔ)角的定義及角平分線的定義即可得解;(2)根據(jù)垂直的定義及鄰補(bǔ)角的定義、角平分線的定義即可得解;(3),過(guò),分別作,,根據(jù)平行線的性質(zhì)及平角的定義即可得解.【詳解】解(1),分別平分和,,,,;(2),,即,,是的平分線,,,又,,又在的內(nèi)部,平分;(3)如圖,不發(fā)生變化,,過(guò),分別作,,則有,,,,,,,,,,,,不變.【點(diǎn)睛】此題考查了平行線的性質(zhì),熟記平行線的性質(zhì)及作出合理的輔助線是解題的關(guān)鍵.三、解答題11.(1);(2)①或;②秒或或秒【分析】(1)通過(guò)延長(zhǎng)作輔助線,根據(jù)平行線的性質(zhì),得到,再根據(jù)外角的性質(zhì)可計(jì)算得到結(jié)果;(2)①當(dāng)時(shí),分兩種情況,Ⅰ當(dāng)在和之間,Ⅱ當(dāng)在和之間,由,計(jì)算出的運(yùn)動(dòng)時(shí)間解析:(1);(2)①或;②秒或或秒【分析】(1)通過(guò)延長(zhǎng)作輔助線,根據(jù)平行線的性質(zhì),得到,再根據(jù)外角的性質(zhì)可計(jì)算得到結(jié)果;(2)①當(dāng)時(shí),分兩種情況,Ⅰ當(dāng)在和之間,Ⅱ當(dāng)在和之間,由,計(jì)算出的運(yùn)動(dòng)時(shí)間,根據(jù)運(yùn)動(dòng)時(shí)間可計(jì)算出,由已知可計(jì)算出的度數(shù);②根據(jù)題意可知,當(dāng)時(shí),分三種情況,Ⅰ射線由逆時(shí)針轉(zhuǎn)動(dòng),,根據(jù)題意可知,,再平行線的性質(zhì)可得,再根據(jù)三角形外角和定理可列等量關(guān)系,求解即可得出結(jié)論;Ⅱ射線垂直時(shí),再順時(shí)針向運(yùn)動(dòng)時(shí),,根據(jù)題意可知,,,,可計(jì)算射線的轉(zhuǎn)動(dòng)度數(shù),再根據(jù)轉(zhuǎn)動(dòng)可列等量關(guān)系,即可求出答案;Ⅲ射線垂直時(shí),再順時(shí)針向運(yùn)動(dòng)時(shí),,根據(jù)題意可知,,,根據(jù)(1)中結(jié)論,,,可計(jì)算出與代數(shù)式,再根據(jù)平行線的性質(zhì),可列等量關(guān)系,求解可得出結(jié)論.【詳解】解:(1)延長(zhǎng)與相交于點(diǎn),如圖1,,,,;(2)①Ⅰ如圖2,,,,射線運(yùn)動(dòng)的時(shí)間(秒,射線旋轉(zhuǎn)的角度,又,;Ⅱ如圖3所示,,,,射線運(yùn)動(dòng)的時(shí)間(秒,射線旋轉(zhuǎn)的角度,又,;的度數(shù)為或;②Ⅰ當(dāng)由運(yùn)動(dòng)如圖4時(shí),與相交于點(diǎn),根據(jù)題意可知,經(jīng)過(guò)秒,,,,,又,,解得(秒;Ⅱ當(dāng)運(yùn)動(dòng)到,再由運(yùn)動(dòng)到如圖5時(shí),與相交于點(diǎn),根據(jù)題意可知,經(jīng)過(guò)秒,,,,,運(yùn)動(dòng)的度數(shù)可得,,解得;Ⅲ當(dāng)由運(yùn)動(dòng)如圖6時(shí),,根據(jù)題意可知,經(jīng)過(guò)秒,,,,,,,又,,,解得(秒),當(dāng)?shù)闹禐槊牖蚧蛎霑r(shí),.【點(diǎn)睛】本題主要考查平行線性質(zhì),合理添加輔助線和根據(jù)題意畫(huà)出相應(yīng)的圖形時(shí)解決本題的關(guān)鍵.12.(1);(2),見(jiàn)解析;(3)不變,【分析】(1)根據(jù)平行線的性質(zhì)求出,再求出的度數(shù),利用內(nèi)錯(cuò)角相等可求出角的度數(shù);(2)過(guò)點(diǎn)作∥,類(lèi)似(1)利用平行線的性質(zhì),得出三個(gè)角的關(guān)系;(3)運(yùn)用解析:(1);(2),見(jiàn)解析;(3)不變,【分析】(1)根據(jù)平行線的性質(zhì)求出,再求出的度數(shù),利用內(nèi)錯(cuò)角相等可求出角的度數(shù);(2)過(guò)點(diǎn)作∥,類(lèi)似(1)利用平行線的性質(zhì),得出三個(gè)角的關(guān)系;(3)運(yùn)用(2)的結(jié)論和平行線的性質(zhì)、角平分線的性質(zhì),可求出的度數(shù),可得結(jié)論.【詳解】(1)因?yàn)椤危?,因?yàn)椤螧CD=73°,所以,故答案為:(2),如圖②,過(guò)點(diǎn)作∥,則,.因?yàn)?,所以,?)不變,設(shè),因?yàn)槠椒?,所以.由?)的結(jié)論可知,且,則:.因?yàn)椤?,所以,因?yàn)槠椒?,所以.因?yàn)椤?,所以,所以.【點(diǎn)睛】本題考查了平行線的性質(zhì)和角平分線的定義,解題關(guān)鍵是熟練運(yùn)用平行線的性質(zhì)證明角相等,通過(guò)等量代換等方法得出角之間的關(guān)系.13.(1)①見(jiàn)解析;②;見(jiàn)解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF【分析】(1)①根據(jù)題意畫(huà)出圖形;②依據(jù)DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠解析:(1)①見(jiàn)解析;②;見(jiàn)解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF【分析】(1)①根據(jù)題意畫(huà)出圖形;②依據(jù)DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠A+∠AFD=180°,進(jìn)而得出∠EDF=∠A;(2)①過(guò)G作GH∥AB,依據(jù)平行線的性質(zhì),即可得到∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②過(guò)G作GH∥AB,依據(jù)平行線的性質(zhì),即可得到∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【詳解】解:(1)①如圖,②∵DE∥AB,DF∥AC,∴∠EDF+∠AFD=180°,∠A+∠AFD=180°,∴∠EDF=∠A;(2)①∠AFG+∠EDG=∠DGF.如圖2所示,過(guò)G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②∠AFG-∠EDG=∠DGF.如圖所示,過(guò)G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【點(diǎn)睛】本題考查了平行線的判定和性質(zhì):兩直線平行,內(nèi)錯(cuò)角相等.正確的作出輔助線是解題的關(guān)鍵.14.(1)136°;(2)∠AOG+∠NEF=90°,理由見(jiàn)解析;(3)當(dāng)點(diǎn)P在GF上時(shí),∠OPQ=140°﹣∠POQ+∠PQF;當(dāng)點(diǎn)P在線段GF的延長(zhǎng)線上時(shí),140°﹣∠POQ=∠OPQ+∠PQF.解析:(1)136°;(2)∠AOG+∠NEF=90°,理由見(jiàn)解析;(3)當(dāng)點(diǎn)P在GF上時(shí),∠OPQ=140°﹣∠POQ+∠PQF;當(dāng)點(diǎn)P在線段GF的延長(zhǎng)線上時(shí),140°﹣∠POQ=∠OPQ+∠PQF.【分析】(1)如圖1,作CP∥a,則CP∥a∥b,根據(jù)平行線的性質(zhì)可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后利用∠ACP+∠BCP=90°即可求得答案;(2)如圖2,作CP∥a,則CP∥a∥b,根據(jù)平行線的性質(zhì)可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后結(jié)合已知條件可得∠BCP=∠NEF,然后利用∠ACP+∠BCP=90°即可得到結(jié)論;(3)分兩種情況,如圖3,當(dāng)點(diǎn)P在GF上時(shí),過(guò)點(diǎn)P作PN∥OG,則NP∥OG∥EF,根據(jù)平行線的性質(zhì)可推出∠OPQ=∠GOP+∠PQF,進(jìn)一步可得結(jié)論;如圖4,當(dāng)點(diǎn)P在線段GF的延長(zhǎng)線上時(shí),同上面方法利用平行線的性質(zhì)解答即可.【詳解】解:(1)如圖1,作CP∥a,∵,∴CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∴∠BCP=180°﹣∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°﹣∠CEF=90°,∵∠AOG=46°,∴∠CEF=136°,故答案為136°;(2)∠AOG+∠NEF=90°.理由如下:如圖2,作CP∥a,則CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,而∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°;(3)如圖3,當(dāng)點(diǎn)P在GF上時(shí),過(guò)點(diǎn)P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠GOP+∠PQF,∴∠OPQ=140°﹣∠POQ+∠PQF;如圖4,當(dāng)點(diǎn)P在線段GF的延長(zhǎng)線上時(shí),過(guò)點(diǎn)P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴140°﹣∠POQ=∠OPQ+∠PQF.【點(diǎn)睛】本題考查了平行線的性質(zhì)以及平行公理的推論等知識(shí),屬于??碱}型,正確添加輔助線、靈活應(yīng)用平行線的判定和性質(zhì)是解題的關(guān)鍵.15.(1);(2)理由見(jiàn)解析;(3),理由見(jiàn)解析.【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過(guò)點(diǎn)B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°,∠1=∠解析:(1);(2)理由見(jiàn)解析;(3),理由見(jiàn)解析.【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過(guò)點(diǎn)B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°,∠1=∠DBC,則∠ABD=∠ABC?∠DBC=60°?∠1,進(jìn)而得出結(jié)論;(3)過(guò)點(diǎn)C作CP∥a,由角平分線定義得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行線的性質(zhì)得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出結(jié)論.【詳解】解:(1)如圖1,,,,;圖1(2)理由如下:如圖2.過(guò)點(diǎn)作,圖2,,,,,,;(3),圖3理由如下:如圖3,過(guò)點(diǎn)作,平分,,,又,,,,,又,,.【點(diǎn)睛】本題是三角形綜合題目,考查了平移的性質(zhì)、直角三角形的性質(zhì)、平行線的判定與性質(zhì)、角平分線定義、平角的定義等知識(shí);本題綜合性強(qiáng),熟練掌握平移的性質(zhì)和平行線的性質(zhì)是解題的關(guān)鍵.四、解答題16.(1)①115°;110°;②;理由見(jiàn)解析;(2);理由見(jiàn)解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內(nèi)角和定理求出∠B=50°,由平行線的性質(zhì)得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②;理由見(jiàn)解析;(2);理由見(jiàn)解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內(nèi)角和定理求出∠B=50°,由平行線的性質(zhì)得出∠EDB=∠C=30°,由角平分線定義得出,,由三角形的外角性質(zhì)得出∠DGF=100°,再由三角形的外角性質(zhì)即可得出結(jié)果;若∠B=40°,則∠BAC+∠C=180°-40°=140°,由角平分線定義得出,,由三角形的外角性質(zhì)即可得出結(jié)果;②由①得:∠EDB=∠C,,,由三角形的外角性質(zhì)得出∠DGF=∠B+∠BAG,再由三角形的外角性質(zhì)即可得出結(jié)論;(2)由(1)得:∠EDB=∠C,,,由三角形的外角性質(zhì)和三角形內(nèi)角和定理即可得出結(jié)論.【詳解】(1)①若∠BAC=100°,∠C=30°,則∠B=180°-100°-30°=50°,∵DE∥AC,∴∠EDB=∠C=30°,∵AG平分∠BAC,DF平分∠EDB,∴,,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,則∠BAC+∠C=180°-40°=140°,∵AG平分∠BAC,DF平分∠EDB,∴,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=故答案為:115°;110°;②;理由如下:由①得:∠EDB=∠C,,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=;(2)如圖2所示:;理由如下:由(1)得:∠EDB=∠C,,,∵∠AHF=∠B+∠BDH,∴∠AFD=180°-∠BAG-∠AHF.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理、三角形的外角性質(zhì)、平行線的性質(zhì)等知識(shí);熟練掌握三角形內(nèi)角和定理和三角形的外角性質(zhì)是解題的關(guān)鍵.17.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當(dāng)時(shí),;當(dāng)時(shí),.【分析】(1)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),進(jìn)而可求和的度數(shù);解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當(dāng)時(shí),;當(dāng)時(shí),.【分析】(1)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),進(jìn)而可求和的度數(shù);(2)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),則前三問(wèn)利用即可得出答案,第4問(wèn)利用即可得出答案;(3)按照(2)的方法,將相應(yīng)的數(shù)換成字母即可得出答案.【詳解】(1)∵,,∴.∵平分,∴.∵是高,,,,.(2)當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,.(3)當(dāng)時(shí),即時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng)時(shí),即時(shí),∵,,∴.∵平分,∴.∵是高,,,;綜上所述,當(dāng)時(shí),;當(dāng)時(shí),.【點(diǎn)睛】本題主要考查三角形內(nèi)角和定理和三角形的角平分線,高,掌握三角形內(nèi)角和定理和直角三角形兩銳角互余是解題的關(guān)鍵.18.[習(xí)題回顧]證明見(jiàn)解析;[變式思考]相等,證明見(jiàn)解析;[探究延伸]∠M+∠CFE=90°,證明見(jiàn)解析.【分析】[習(xí)題回顧]根據(jù)同角的余角相等可證明∠B=∠ACD,再根據(jù)三角形的外角的性質(zhì)即可解析:[習(xí)題回顧]證明見(jiàn)解析;[變式思考]相等,證明見(jiàn)解析;[探究延伸]∠M+∠CFE=90°,證明見(jiàn)解析.【分析】[習(xí)題回顧]根據(jù)同角的余角相等可證明∠B=∠ACD,再根據(jù)三角形的外角的性質(zhì)即可證明;[變式思考]根據(jù)角平分線的定義和對(duì)頂角相等可得∠CAE=∠DAF、再根據(jù)直角三角形的性質(zhì)和等角的余角相等即可得出=;[探究延伸]根據(jù)角平分線的定義可得∠EAN=90°,根據(jù)直角三角形兩銳角互余可得∠M+∠CEF=90°,再根據(jù)三角形外角的性質(zhì)可得∠CEF=∠CFE,由此可證∠M+∠CFE=90°.【詳解】[習(xí)題回顧]證明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分線,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;[變式思考]相等,理由如下:證明:∵AF為∠BAG的角平分線,∴∠GAF=∠DAF,∵∠CAE=∠GAF,∴∠CAE=∠DAF,∵CD為AB邊上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE;[探究延伸]∠M+∠CFE=90°,證明:∵C、A、G三點(diǎn)共線
AE、AN為角平分線,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.【點(diǎn)睛】本題考查三角形的外角的性質(zhì),直角三角形兩銳角互余,角平分線的有關(guān)證明,等角或同角的余角相等.在本題中用的比較多的是利用等角或同角的余角相等證明角相等和三角形一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角之和,理解并掌握是解決此題的關(guān)鍵.19.(1)①115°,110°;②,證明見(jiàn)解析;(2),證明見(jiàn)解析.【解析】【分析】(1)①根據(jù)角平分線的定義求得∠CAG=∠BAC=50°;再由平行線的性質(zhì)可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②,證明見(jiàn)解析;(2),證明見(jiàn)解析.【解析】【分析】(1)①根據(jù)角平分線的定義求得∠CAG=∠BAC=50°;再由平行線的性質(zhì)可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的內(nèi)角和定理求得∠AFD的度數(shù)即可;已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線的定義可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根據(jù)平行線的性質(zhì)可得∠EDG=∠C,∠FMD=∠GAC;即可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;再由三角形的內(nèi)角和定理可求得∠AFD=110°;②∠AFD=90°+∠B,已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線的定義可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根據(jù)平行線的性質(zhì)可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形的內(nèi)角和定理可得∠AFD=90°+∠B;(2)∠AFD=90°-∠B,已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線的定義可得∠CAG=∠BAC,∠NDE=∠EDB,即可得∠FDM=∠NDE=∠EDB;由DE//AC,根據(jù)平行線的性質(zhì)可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=∠C,所以∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形外角的性質(zhì)可得∠AFD=∠FDM+∠FMD=90°-∠B.【詳解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=∠BAC=50°;∵,∠C=
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)藥行業(yè)采購(gòu)員面試問(wèn)題解析
- 銷(xiāo)售目標(biāo)面試題及答案
- 項(xiàng)目經(jīng)理技術(shù)能力考試題含答案
- 建筑工地安全監(jiān)督員面試題集
- 銀行理財(cái)顧問(wèn)的面試全攻略及答案參考
- 市場(chǎng)營(yíng)銷(xiāo)總監(jiān)面試技巧與參考答案
- 客戶(hù)服務(wù)經(jīng)理面試考核重點(diǎn)與技巧
- 2025河南開(kāi)封市文化旅游股份有限公司招聘2人筆試考試參考題庫(kù)及答案解析
- 月亮地球公轉(zhuǎn)課件
- 護(hù)理安全防護(hù)及管理
- 2025年煙花爆竹經(jīng)營(yíng)單位安全管理人員考試試題及答案
- 2025天津大學(xué)管理崗位集中招聘15人參考筆試試題及答案解析
- 2025廣東廣州黃埔區(qū)第二次招聘社區(qū)專(zhuān)職工作人員50人考試筆試備考題庫(kù)及答案解析
- 2025年云南省人民檢察院聘用制書(shū)記員招聘(22人)考試筆試參考題庫(kù)及答案解析
- 2026屆上海市青浦區(qū)高三一模數(shù)學(xué)試卷和答案
- 2026年重慶安全技術(shù)職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)附答案
- 環(huán)衛(wèi)設(shè)施設(shè)備采購(gòu)項(xiàng)目投標(biāo)方案投標(biāo)文件(技術(shù)方案)
- 微創(chuàng)機(jī)器人手術(shù)基層普及路徑
- 24- 解析:吉林省長(zhǎng)春市2024屆高三一模歷史試題(解析版)
- 旋挖鉆機(jī)地基承載力驗(yàn)算2017.7
- 《現(xiàn)代漢語(yǔ)詞匯》PPT課件(完整版)
評(píng)論
0/150
提交評(píng)論