綜合解析人教版8年級數(shù)學上冊《全等三角形》定向攻克試卷(解析版)_第1頁
綜合解析人教版8年級數(shù)學上冊《全等三角形》定向攻克試卷(解析版)_第2頁
綜合解析人教版8年級數(shù)學上冊《全等三角形》定向攻克試卷(解析版)_第3頁
綜合解析人教版8年級數(shù)學上冊《全等三角形》定向攻克試卷(解析版)_第4頁
綜合解析人教版8年級數(shù)學上冊《全等三角形》定向攻克試卷(解析版)_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學上冊《全等三角形》定向攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,△ABC是邊長為4的等邊三角形,點P在AB上,過點P作PE⊥AC,垂足為E,延長BC至點Q,使CQ=PA,連接PQ交AC于點D,則DE的長為()A.1 B.1.8 C.2 D.2.52、若△ABC≌△DEF,且△ABC的周長為20,AB=5,BC=8,則DF長為(

)A.5 B.8 C.7 D.5或83、如圖,與相交于點O,,不添加輔助線,判定的依據(jù)是(

)A. B. C. D.4、如圖,△ABC中,已知∠B=∠C,點E,F(xiàn),P分別是AB,AC,BC上的點,且BE=CP,BP=CF,若∠A=112°,則∠EPF的度數(shù)是(

)A.34° B.36° C.38° D.40°5、下列說法正確的是(

)A.兩個長方形是全等圖形 B.形狀相同的兩個三角形全等C.兩個全等圖形面積一定相等 D.所有的等邊三角形都是全等三角形第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,BE交AC于點M,交CF于點D,AB交CF于點N,,給出的下列五個結(jié)論中正確結(jié)論的序號為.①;②;③;④;⑤.2、如圖,在△ABC中,AC=BC,∠ABC=54°,CE平分∠ACB,AD平分∠CAB,CE與AD交于點F,G為△ABC外一點,∠ACD=∠FCG,∠CBG=∠CAF,連接DG.下列結(jié)論:①△ACF≌△BCG;②∠BGC=117°;③S△ACE=S△CFD+S△BCG;④AD=DG+BG.其中結(jié)論正確的是_____________(只需要填寫序號).3、如圖,圖形的各個頂點都在33正方形網(wǎng)格的格點上.則______.4、如圖,在四邊形中,,,,的延長線與、相鄰的兩個角的平分線交于點E,若,則的度數(shù)為___________.5、如圖,已知的周長是22,PB、PC分別平分和,于D,且,的面積是________.三、解答題(5小題,每小題10分,共計50分)1、如圖,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延長線于點E.求證:BD=2CE.2、已知:如圖,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°.(1)求證:AC=BD;(2)求∠APB的度數(shù).3、已知:如圖,在△ABC中,AB=AC,在△ADE中,AD=AE,且∠BAC=∠DAE,連接BD,CE交于點F,連接AF.(1)求證:△ABD≌△ACE;(2)求證:FA平分∠BFE.4、如圖,在中,AB=AC,D是BA延長線上一點,E是AC的中點,連接DE并延長,交BC于點M,∠DAC的平分線交DM于點F.求證:AF=CM.5、已知Rt△ABC中,∠BAC=90°,AB=AC,點E為△ABC內(nèi)一點,連接AE,CE,CE⊥AE,過點B作BD⊥AE,交AE的延長線于D.(1)如圖1,求證BD=AE;(2)如圖2,點H為BC中點,分別連接EH,DH,求∠EDH的度數(shù);(3)如圖3,在(2)的條件下,點M為CH上的一點,連接EM,點F為EM的中點,連接FH,過點D作DG⊥FH,交FH的延長線于點G,若GH:FH=6:5,△FHM的面積為30,∠EHB=∠BHG,求線段EH的長.-參考答案-一、單選題1、C【解析】【分析】過作的平行線交于,通過證明≌,得,再由是等邊三角形,即可得出.【詳解】解:過作的平行線交于,,是等邊三角形,,,是等邊三角形,,∵CQ=PA,∴在中和中,,≌,,于,是等邊三角形,,,,,,故選:C.【考點】本題主要考查了等邊三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),作輔助線構(gòu)造全等三角形是解題的關(guān)鍵.2、C【解析】【分析】根據(jù)三角形的周長可得AC長,然后再利用全等三角形的性質(zhì)可得DF長.【詳解】∵△ABC的周長為20,AB=5,BC=8,∴AC=20?5?8=7,∵△ABC≌△DEF,∴DF=AC=7,故選C.【考點】此題主要考查了全等三角形的性質(zhì),關(guān)鍵是掌握全等三角形的對應邊相等.3、B【解析】【分析】根據(jù),,正好是兩邊一夾角,即可得出答案.【詳解】解:∵在△ABO和△DCO中,,∴,故B正確.故選:B.【考點】本題主要考查了全等三角形的判定,熟練掌握兩邊對應相等,且其夾角也對應相等的兩個三角形全等,是解題的關(guān)鍵.4、A【解析】【分析】由三角形內(nèi)角和定理可得∠B=∠C=34°,由△EBP≌△PCF可得∠EPB=∠PFC,再由三角形外角的性質(zhì)便可解答;【詳解】解:△BAC中,∠B=∠C,∠A=112°,則∠B=∠C=34°,△EBP和△PCF中:BE=CP,∠EBP=∠PCF,BP=CF,∴△EBP≌△PCF(SAS),∴∠EPB=∠PFC,∵∠BPF=∠EPB+∠EPF=∠C+∠PFC,∴∠EPF=∠C=34°,故選:A.【考點】本題考查了三角形內(nèi)角和定理,全等三角形的判定和性質(zhì),三角形外角的性質(zhì);掌握全等三角形的判定定理和性質(zhì)是解題關(guān)鍵.5、C【解析】【分析】性質(zhì)、大小完全相同的兩個圖形是全等形,根據(jù)定義解答.【詳解】A、兩個長方形的長或?qū)挷灰欢ㄏ嗟龋什皇侨葓D形;B、由于大小不一定相同,故形狀相同的兩個三角形不一定全等;C、兩個全等圖形面積一定相等,故正確;D、所有的等邊三角形大小不一定相同,故不一定是全等三角形;故選:C.【考點】此題考查全等圖形的概念及性質(zhì),熟記概念是解題的關(guān)鍵.二、填空題1、①;②;③;⑤【解析】【分析】①先證明△ABE≌△ACF,然后根據(jù)全等三角形的性質(zhì)即可判定;②利用全等三角形的性質(zhì)即可判定;③根據(jù)ASA即可證明三角形全等;④無法證明該結(jié)論;⑤根據(jù)ASA證明三角形全等即可.【詳解】解:在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴∠BAE=∠CAF,BE=CF,故②正確,∴∠BAE-∠BAC=∠CAF-∠BAC,即∠1=∠2,故①正確,∵△ABE≌△ACF,∴AB=AC,在△CAN和△BAM中,,∴△CAN≌△BAM(ASA),故③正確,CD=DN不能證明成立,故④錯誤在△AFN和△AEM中,∴△AFN≌△AEM(ASA),故⑤正確.結(jié)論中正確結(jié)論的序號為①;②;③;⑤.故答案為①;②;③;⑤.【考點】本題主要考查了三角形全等的判定和性質(zhì),解題的關(guān)鍵是正確尋找全等三角形全等的條件.2、①②④【解析】【分析】根據(jù)條件求得∠BAC=∠ABC=54°,∠ACB=72°,∠ACE=∠BCE=36°,∠CAF=∠BAF=27°,利用ASA證明△ACF≌△BCG,再根據(jù)SAS證明△CDF≌△CDG,據(jù)此即可推斷各選項的正確性.【詳解】解:在△ABC中,AC=BC,∠ABC=54°,∴∠BAC=∠ABC=54°,∠ACB=180°-54°-54°=72°,∵AC=BC,CE平分∠ACB,AD平分∠CAB,∴∠ACE=∠BCE=∠ACB=36°,∠CAF=∠BAF=∠BAC=27°,∵∠ACD=∠FCG=72°,∴∠BCG=∠FCG-36°=36°,在△ACF和△BCG中,,∴△ACF≌△BCG(ASA);故①正確;∴∠BGC=∠AFC=180°-36°-27°=117°,故②正確;∴CF=CG,AF=BG,在△CDF和△CDG中,,∴△CDF≌△CDG(SAS),∴DF=DG,∴AD=DF+AF=DG+BG,故④正確;∵S△CFD+S△BCG=S△CFD+S△ACF=S△ACD,而S△ACE不等于S△ACD,故③不正確;綜上,正確的是①②④,故答案為:①②④.【考點】本題考查了全等三角形的判定和性質(zhì),三角形內(nèi)角和定理,角平分線的定義,解題的關(guān)鍵是靈活運用所學知識解決問題,3、45°或45度【解析】【分析】通過證明三角形全等得出∠1=∠3,再根據(jù)∠1+∠2=∠3+∠2即可得出答案.【詳解】解:如圖所示,由題意得,在Rt△ABC和Rt△EFC中,∵∴Rt△ABC≌Rt△EFC(SAS)∴∠3=∠1∵∠2+∠3=90°∴∠1+∠2=∠3+∠2=90°故答案為:45°【考點】本題主要考查了全等三角形的判定和性質(zhì),由證明三角形全等得出∠1=∠3是解題的關(guān)鍵.4、【解析】【分析】先證明Rt△CDA≌Rt△CBA得到,再由角平分線的定義求出∠EDC=45°,最后根據(jù)三角形內(nèi)角和定理求解即可.【詳解】解:∵,,∴∠CDA=∠CBA=90°,在Rt△CDA和Rt△CBA中,,∴Rt△CDA≌Rt△CBA(HL),∴,∵DE平分與∠ADC相鄰的角,∠ADC=90°,∴∠EDC=45°,∴∠CED=180°-∠DAE-∠ADC-∠EDC=15°,故答案為:15°.【考點】本題主要考查了全等三角形的性質(zhì)與判定,三角形內(nèi)角和定理,角平分線的定義,熟知全等三角形的性質(zhì)與判定條件是解題的關(guān)鍵.5、33【解析】【分析】連接AP,過點P分別作PE⊥AB于點E,PF⊥AC于點F,根據(jù)角平分線的性質(zhì)定理,可得PD=PE=PF=3,再根據(jù)三角形的面積等于三個小三角形的面積之和,即可求解.【詳解】解:如圖,連接AP,過點P分別作PE⊥AB于點E,PF⊥AC于點F,∵PB、PC分別平分和,于D,∴PD=PE,PD=PF,∴PD=PE=PF=3,∵的周長是22,∴的面積是.故答案為:33【考點】本題主要考查了角平分線的性質(zhì)定理,熟練掌握角平分線上的點到角兩邊的距離相等是解題的關(guān)鍵.三、解答題1、證明見解析.【解析】【分析】延長CE、BA交于F,根據(jù)角邊角定理,證明△BEF≌△BEC,進而得到CF=2CE的關(guān)系.再證明∠ACF=∠1,根據(jù)角邊角定理證明△ACF≌△ABD,得到BD=CF,至此問題得解.【詳解】證明:分別延長BA,CE交于點F.∵BE⊥CE,∴∠BEF=∠BEC=90°.又∵∠1=∠2,BE=BE,∴△BEF≌△BEC(ASA),∴CE=FE=CF.∵∠1+∠F=90°,∠ACF+∠F=90°,∴∠1=∠ACF.又∵AB=AC,∠BAD=∠CAF=90°,∴△ABD≌△ACF(ASA),∴BD=CF,∴BD=2CE【考點】本題考查了全等三角形的判定與性質(zhì).解題的關(guān)鍵是恰當添加輔助線,構(gòu)造全等三角形,將所求問題轉(zhuǎn)化為全等三角形內(nèi)邊間的關(guān)系來解決.2、(1)見解析;(2)【解析】【分析】(1)通過證明,即可求證;(2)利用三角形外角的性質(zhì)可得,由(1)可得,從而得到,利用三角形內(nèi)角和的性質(zhì)即可求解.(1)證明:∵,∴,又∵OA=OB,OC=OD,∴,∴;(2)解:由(1)可得,由三角形外角的性質(zhì)可得∴,∴,【考點】此題考查了全等三角形的判定與性質(zhì),三角形內(nèi)角的性質(zhì)以及三角形外角的性質(zhì),解題的關(guān)鍵是熟練掌握相關(guān)基本性質(zhì).3、(1)見解析(2)見解析【解析】【分析】(1)根據(jù)SAS證明結(jié)論即可;(2)作AM⊥BD于M,作AN⊥CE于N.由(1)可得BD=CE,S△BAD=S△CAE,然后根據(jù)角平分線的性質(zhì)即可解決問題.(1)證明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS);(2)證明:如圖,作AM⊥BD于M,作AN⊥CE于N.由△BAD≌△CAE,∴BD=CE,S△BAD=S△CAE,∵,∴AM=AN,∴點A在∠BFE平分線上,∴FA平分∠BFE.【考點】本題考查全等三角形的判定和性質(zhì)、三角形的面積,解題的關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì),學會轉(zhuǎn)化的思想,巧用等積法進行證明.4、證明見解析.【解析】【分析】先根據(jù)等腰三角形的性質(zhì)可得,再根據(jù)三角形的外角性質(zhì)可得,然后根據(jù)角平分線的定義得,最后根據(jù)三角形全等的判定定理與性質(zhì)即可得證.【詳解】∵,∴,∴,∵AF是的平分線,∴,∵E是AC的中點,∴,在和中,,∴,∴.【考點】本題考查了等腰三角形的性質(zhì)、角平分線的定義、三角形全等的判定定理與性質(zhì)等知識點,熟練掌握三角形全等的判定方法是解題關(guān)鍵.5、(1)見解析;(2)∠EDH=45°;(3)EH=10.【解析】【分析】(1)根據(jù)全等三角形的判定得出△CAE≌△ABD,進而利用全等三角形的性質(zhì)得出AE=BD即可;(2)根據(jù)全等三角形的判定得出△AEH≌△BDH,進而利用全等三角形的性質(zhì)解答即可;(3)過點M作MS⊥FH于點S,過點E作ER⊥FH,交HF的延長線于點R,過點E作ET∥BC,根據(jù)全等三角形判定和性質(zhì)解答即可.【詳解】證明:(1)∵CE⊥AE,BD⊥AE,∴∠AEC=∠ADB=90°,∵∠BAC=90°,∴∠ACE+CAE=∠CAE+∠BAD=90°,∴∠ACE=∠BAD,在△CAE與△ABD中∴△CAE≌△ABD(AAS),∴AE=BD;(2)連接AH∵AB=AC,B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論