中考數(shù)學(xué)總復(fù)習(xí)《旋轉(zhuǎn)》??键c試卷(含答案詳解)_第1頁
中考數(shù)學(xué)總復(fù)習(xí)《旋轉(zhuǎn)》??键c試卷(含答案詳解)_第2頁
中考數(shù)學(xué)總復(fù)習(xí)《旋轉(zhuǎn)》常考點試卷(含答案詳解)_第3頁
中考數(shù)學(xué)總復(fù)習(xí)《旋轉(zhuǎn)》??键c試卷(含答案詳解)_第4頁
中考數(shù)學(xué)總復(fù)習(xí)《旋轉(zhuǎn)》常考點試卷(含答案詳解)_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

中考數(shù)學(xué)總復(fù)習(xí)《旋轉(zhuǎn)》常考點試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,中,,,若將繞點逆時針旋轉(zhuǎn)得到,連接,則在點運動過程中,線段的最小值為(

)A.1 B. C. D.22、下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.3、如圖,Rt△ABC中,∠C=90°,∠A=30°,AB=20,點P是AC邊上的一個動點,將線段BP繞點B順時針旋轉(zhuǎn)60°得到線段BQ,連接CQ.則在點P運動過程中,線段CQ的最小值為(

)A.4 B.5 C.10 D.54、如圖,已知是等邊三角形,邊長為,將繞點逆時針旋轉(zhuǎn)后點的對應(yīng)點的坐標(biāo)是(

)A. B. C. D.5、如圖,將斜邊為4,且一個角為30°的直角三角形AOB放在直角坐標(biāo)系中,兩條直角邊分別與坐標(biāo)軸重合,D為斜邊的中點,現(xiàn)將三角形AOB繞O點順時針旋轉(zhuǎn)120°得到三角形EOC,則點D對應(yīng)的點的坐標(biāo)為()A.(1,﹣) B.(,1) C.(2,﹣2) D.(2,﹣2)第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,兩塊完全一樣的含30°角的三角板完全重疊在一起,若繞長直角邊中點M轉(zhuǎn)動,使上面一塊三角板的斜邊剛好經(jīng)過下面一塊三角板的直角頂點,已知∠A=30°,BC=2,則此時兩直角頂點C,C'間的距離是_____.2、如圖,△ABC和△DEC關(guān)于點C成中心對稱,若AC=1,AB=2,∠BAC=90°,則AE的長是_________.3、如圖,在菱形中,,將菱形繞點逆時針方向旋轉(zhuǎn),對應(yīng)得到菱形,點在上,與交于點,則的長是_____.4、點A(1,-5)關(guān)于原點的對稱點為點B,則點B的坐標(biāo)為______.5、已知點與點關(guān)于原點對稱,則的值為_________.三、解答題(5小題,每小題10分,共計50分)1、如圖,平面直角坐標(biāo)系中,△ABC的三個頂點的坐標(biāo)分別為A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)在平面直角坐標(biāo)系中畫出與△ABC關(guān)于點P(1,0)成中心對稱的△A'B'C',并分別寫出點A',B',C'的坐標(biāo);(2)如果點M(a,b)是△ABC邊上(不與A,B,C重合)任意一點,請寫出在△A'B'C'上與點M對應(yīng)的點M'的坐標(biāo).2、如圖,在等腰△ABC中,點D為直線BC上一動點(點D不B、C重合),以AD為邊向右側(cè)作正方形ADEF,連接CF.【猜想】如圖①,當(dāng)點D在線段BC上時,直接寫出CF、BC、CD三條線段的數(shù)量關(guān)系.【探究】如圖②,當(dāng)點D在線段BC的延長線上時,判斷CF、BC,CD三條線段的數(shù)量關(guān)系,并說明理由.【應(yīng)用】如圖③,當(dāng)點D在線段BC的反向延長線上時,點A、F分別在直線BC兩側(cè),AE.DF交點為點O連接CO,若,,則.3、如圖,等腰三角形中,,.作于點,將線段繞著點順時針旋轉(zhuǎn)角后得到線段,連接.(1)求證:;(2)延長線段,交線段于點.求的度數(shù)(用含有的式子表示).4、如圖,在的方格紙中,已知格點P,請按要求畫格點圖形(頂點均在格點上).(1)在圖1中畫一個銳角三角形,使P為其中一邊的中點,再畫出該三角形向右平移2個單位后的圖形.(2)在圖2中畫一個以P為一個頂點的鈍角三角形,使三邊長都不相等,再畫出該三角形繞點P旋轉(zhuǎn)后的圖形.5、如圖是由邊長為的小正方形構(gòu)成的的網(wǎng)格,線段的端點均在格點上,請按要求畫圖畫出一個即可.(1)在圖①中以為邊畫一個四邊形,使它的另外兩個頂點在格點上,且該四邊形是中心對稱圖形,但不是軸對稱圖形;(2)在圖②中以為對角線畫一個四邊形,使它的另外兩個頂點在格點上,且所畫四邊形既是軸對稱圖形又是中心對稱圖形.-參考答案-一、單選題1、B【解析】【分析】在AB上截取AQ=AO=1,利用SAS證明△AQD≌△AOE,推出QD=OE,當(dāng)QD⊥BC時,QD的值最小,即線段OE有最小值,利用勾股定理即可求解.【詳解】如圖,在AB上截取AQ=AO=1,連接DQ,∵將AD繞A點逆時針旋轉(zhuǎn)90°得到AE,∴∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,在△AQD和△AOE中,,∴△AQD≌△AOE(SAS),∴QD=OE,∵D點在線段BC上運動,∴當(dāng)QD⊥BC時,QD的值最小,即線段OE2有最小值,∵△ABC是等腰直角三角形,∴∠B=45°,∵QD⊥BC,∴△QBD是等腰直角三角形,∵AB=AC=3,AO=1,∴QB=2,∴由勾股定理得QD=QB=,∴線段OE有最小值為,故選:B.【考點】本題考查了勾股定理,等腰直角三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì),熟記各圖形的性質(zhì)并準(zhǔn)確識圖是解題的關(guān)鍵.2、C【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念,對各選項分析判斷即可得解.【詳解】解:A.是軸對稱圖形,不是中心對稱圖形,故本選項不符合題意;B.既不是軸對稱圖形,又不是中心對稱圖形,故本選項不符合題意;C.既是軸對稱圖形,又是中心對稱圖形,故本選項符合題意;D.不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意.故選:C.【考點】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.3、D【解析】【分析】將Rt△ABC繞點B順時針旋轉(zhuǎn)60°得到,再設(shè)線段的中點為M,并連接CM.根據(jù)線段BP的旋轉(zhuǎn)方式確定點Q在線段上運動,再根據(jù)垂線段最短確定當(dāng)Q與點M重合時,CQ取得最小值為CM.根據(jù)∠C=90°,∠A=30°,AB=20求出BC的長度,再根據(jù)旋轉(zhuǎn)的性質(zhì)求出和的長度,根據(jù)線段的和差關(guān)系確定點C是線段的中點,進(jìn)而確定CM是的中位線,再根據(jù)三角形中位線定理即可求出CM的長度.【詳解】解:如下圖所示,將Rt△ABC繞點B順時針旋轉(zhuǎn)60°得到,再設(shè)線段的中點為M,并連接CM.∵點P是AC邊上的一個動點,線段BP繞點B順時針旋轉(zhuǎn)60°得到線段BQ,∴點Q在線段上運動.∴當(dāng),即點Q與點M重合時,線段CQ取得最小值為CM.∵∠C=90°,∠A=30°,AB=20,∴BC=10.∵Rt△ABC繞點B順時針旋轉(zhuǎn)60°得到,∴=BC=10,.∴.∴.∴點C是線段中點.∵點M是線段的中點,∴CM是的中位線.∴.故選:D.【考點】本題考查旋轉(zhuǎn)的性質(zhì),直角三角形30°所對的直角邊是斜邊的一半,垂線段最短,三角形中位線定理,綜合應(yīng)用這些知識點是解題關(guān)鍵.4、B【解析】【分析】過點作于點過點作軸于點求出點的坐標(biāo),再利用全等三角形的性質(zhì)求解.【詳解】解:過點作于點,過點作軸于點.是等邊三角形,,,,,,,,,,在和中,,≌,,,,故選:.【考點】本題主要考查了等邊三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題.5、A【解析】【分析】根據(jù)題意畫出△AOB繞著O點順時針旋轉(zhuǎn)120°得到的△A′OB′,連接OD,OD′,過D′作DM⊥y軸,由旋轉(zhuǎn)的性質(zhì)得到∠DOD′=120°,根據(jù)AD=BD=OD=2,得到∠AOD度數(shù),進(jìn)而求出∠MOD′度數(shù)為30°,在直角三角形OMD′中求出OM與MD′的長,即可確定出D′的坐標(biāo).【詳解】解:根據(jù)題意畫出△AOB繞著O點順時針旋轉(zhuǎn)120°得到的△A′OB′,連接OD,OD′,過D′作DM⊥y軸,∴∠DOD′=120°,∵D為斜邊AB的中點,∴AD=OD=AB=2,∴∠BAO=∠DOA=30°,∴∠MOD′=30°,在Rt△OMD′中,OD′=OD=2,∴MD′=1,OM==,則D的對應(yīng)點D′的坐標(biāo)為(1,﹣),故選:A.【考點】此題考查旋轉(zhuǎn)的性質(zhì),直角三角形斜邊中線等于斜邊的一半的性質(zhì),30度角所對的直角邊等于斜邊的一半的性質(zhì),勾股定理,正確掌握旋轉(zhuǎn)的性質(zhì)得到對應(yīng)的旋轉(zhuǎn)圖形進(jìn)行解答是解題的關(guān)鍵.二、填空題1、【解析】【分析】先求解,由旋轉(zhuǎn)的性質(zhì)可得可證是等邊三角形,即可求的長.【詳解】解:如圖,連接,∵點M是AC中點,∴AM=CM=,∵旋轉(zhuǎn),∴∴,∴,∴,∴是等邊三角形∴故答案為:【考點】本題考查了等邊三角形的判定,勾股定理的應(yīng)用,旋轉(zhuǎn)的性質(zhì),熟練運用旋轉(zhuǎn)的性質(zhì)是解本題的關(guān)鍵.2、2【解析】【分析】根據(jù)中心對稱的性質(zhì)AD=DE及∠D=90゜,由勾股定理即可求得AE的長.【詳解】∵△DEC與△ABC關(guān)于點C成中心對稱,∴△ABC≌△DEC,∴AB=DE=2,AC=DC=1,∠D=∠BAC=90°,∴AD=2,∵∠D=90°,∴AE=,故答案為.【考點】本題考查了中心對稱的性質(zhì),勾股定理等知識,關(guān)鍵中心對稱性質(zhì)的應(yīng)用.3、【解析】【分析】連接交于,由菱形的性質(zhì)得出,,,由直角三角形的性質(zhì)求出,,得出,由旋轉(zhuǎn)的性質(zhì)得:,得出,證出,由直角三角形的性質(zhì)得出,,即可得出結(jié)果.【詳解】解:連接交于,如圖所示:∵四邊形是菱形,∴,,,∴,∴,∴,由旋轉(zhuǎn)的性質(zhì)得:,∴,∵四邊形是菱形,∴,∴,∴∴,∴,,∴;故答案為.【考點】考核知識點:菱形性質(zhì),旋轉(zhuǎn)性質(zhì).解直角三角形是關(guān)鍵.4、(-1,5)【解析】【分析】根據(jù)若兩點關(guān)于坐標(biāo)原點對稱,橫縱坐標(biāo)均互為相反數(shù),即可求解.【詳解】解:∵點A(1,-5)關(guān)于原點的對稱點為點B,∴點B的坐標(biāo)為(-1,5).故答案為:(-1,5)【考點】本題主要考查了平面直角坐標(biāo)系內(nèi)點關(guān)于原點對稱的特征,熟練掌握若兩點關(guān)于坐標(biāo)原點對稱,橫縱坐標(biāo)均互為相反數(shù)是解題的關(guān)鍵.5、【解析】【分析】根據(jù)已知條件求出a,b,代入求值即可;【詳解】∵點與點關(guān)于原點對稱,∴,,∴;故答案是.【考點】本題主要考查了平面直角坐標(biāo)系點的對稱,準(zhǔn)確計算是解題的關(guān)鍵.三、解答題1、(1)△A'B'C'見解析,A′(3,2),B′(4,4),C′(6,1);(2)M′(2?a,?b).【解析】【分析】(1)分別作出A,B,C的對應(yīng)點A′、B′、C′,然后順次連接可得△A'B'C',再根據(jù)所作圖形寫出坐標(biāo)即可.(2)利用中點坐標(biāo)公式計算即可.【詳解】解:(1)△A'B'C'如圖所示,A′(3,2),B′(4,4),C′(6,1);(2)設(shè)M′(m,n),則有,,∴m=2?a,n=?b,∴M′(2?a,?b).【考點】本題考查作圖?中心對稱,解題的關(guān)鍵是熟練掌握中心對稱的性質(zhì),正確找出對應(yīng)點位置.2、【猜想】CD=BC-CF,理由見解析;【探究】CF=BC+CD,理由見解析;【應(yīng)用】【解析】【分析】【猜想】利用SAS證明△BAD≌△CAF,得出BD=CF,然后根據(jù)線段的和差關(guān)系可得結(jié)論;【探究】利用SAS證明△BAD≌△CAF,得出BD=CF,然后根據(jù)線段的和差關(guān)系可得出結(jié)論;【應(yīng)用】利用SAS證明△BAD≌△CAF,得出BD=CF,∠ACF=∠ABD=135°,求出∠DCF=90°,在Rt△DCF中利用勾股定理求出DF,利用直角三角形的斜邊中線的性質(zhì)可得結(jié)論.【詳解】解:【猜想】CD=BC-CF,理由如下:∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°=∠BAC,∴∠BAD=∠FAC,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∵CD=BC-BD,∴CD=BC-CF:解:【探究】CF=BC+CD,理由如下:∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°,∴∠BAD=∠BAC+∠DAC,∴∠CAF=∠DAF+∠DAC,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∵BD=BC+CD,∴CF=BC+CD;解:【應(yīng)用】∵∠BAC=90°,AB=AC,∠ABC=∠ACB=45°,∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°,∴∠BAC=∠DAF,∴,∴∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∴∠ACF=∠ABD=180°-45°=135°,,∴∠FCD=∠ACF-∠ACB=90°,∴△FCD為直角三角形,∵,∴,∴CD=BC+BD,∴CD=BC+CF=2+1=3,∴,∵正方形ADEF中,O為DF中點,∴,故答案為:.【考點】本題是四邊形綜合題,主要考查了等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì),正方形的性質(zhì),直角三角形斜邊中線的性質(zhì)等知識點,解題的關(guān)鍵是能夠綜合運用運用有關(guān)的知識解決問題.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論