版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)下冊《平行四邊形》章節(jié)測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在△ABC中,點E,F(xiàn)分別是AB,AC的中點.已知∠B=55°,則∠AEF的度數(shù)是()A.75° B.60° C.55° D.40°2、如圖,已知平行四邊形ABCD的面積為8,E、F分別是BC、CD的中點,則△AEF的面積為()A.2 B.3 C.4 D.53、的周長為32cm,AB:BC=3:5,則AB、BC的長分別為()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm4、如圖,已知E為鄰邊相等的平行四邊形ABCD的邊BC上一點,且∠DAE=∠B=80o,那么∠CDE的度數(shù)為()A.20o B.25o C.30o D.35o5、如圖,DE是ABC的中位線,點F在DE上,且∠AFB=90°,若AB=5,BC=8,則EF的長為()A.2.5 B.1.5 C.4 D.5第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,已知在矩形中,,,將沿對角線AC翻折,點B落在點E處,連接,則的長為_________.2、如圖,直線l1⊥l3,l2⊥l3,垂足分別為P、Q,一塊含有45°的直角三角板的頂點A、B、C分別在直線l1、l2、線段PQ上,點O是斜邊AB的中點,若PQ等于,則OQ的長等于_____.3、如圖,在正方形紙片ABCD中,E是CD的中點,將正方形紙片折疊,點B落在線段AE上的點G處,折痕為AF.若,則CF的長為_____.4、如圖,△ABC中,D、E分別是AB、AC的中點,若DE=4cm,則BC=_____cm.5、點D、E、F分別是△ABC三邊的中點,△ABC的周長為24,則△DEF的周長為______.三、解答題(5小題,每小題10分,共計50分)1、如圖,四邊形ABCD是正方形,BE⊥BF,BE=BF,EF與BC交于點G.(1)求證:AE=CF;(2)若∠ABE=62°,求∠GFC+∠BCF的值.2、如圖,△ABC中,點D是邊AC的中點,過D作直線PQ∥BC,∠BCA的平分線交直線PQ于點E,點G是△ABC的邊BC延長線上的點,∠ACG的平分線交直線PQ于點F.求證:四邊形AECF是矩形.3、如圖,中,對角線AC、BD相交于點O,點E,F(xiàn),G,H分別是OA、OB、OC、OD的中點,順次連接EFGH.(1)求證:四邊形EFGH是平行四邊形(2)若的周長為2(AB+BC)=32,則四邊形EFGH的周長為__________4、已知,在中,,,點D為BC的中點.(1)觀察猜想如圖①,若點E、F分別是AB、AC的中點,則線段DE與DF的數(shù)量關(guān)系是______________;線段DE與DF的位置關(guān)系是______________.(2)類比探究如圖②,若點E、F分別是AB、AC上的點,且,上述結(jié)論是否仍然成立,若成立,請證明:若不成立,請說明理由;(3)解決問題如圖③,若點E、F分別為AB、CA延長線的點,且,請直接寫出的面積.
5、在ABC中,D、E、F分別是AB、AC、BC的中點,連接DE、DF.(1)如圖1,若AC=BC,求證:四邊形DECF為菱形;(2)如圖2,過C作CGAB交DE延長線于點G,連接EF,AG,在不添加任何輔助線的情況下,寫出圖中所有與ADG面積相等的平行四邊形.-參考答案-一、單選題1、C【解析】【分析】證EF是△ABC的中位線,得EF∥BC,再由平行線的性質(zhì)即可求解.【詳解】解:∵點E,F(xiàn)分別是AB,AC的中點,∴EF是△ABC的中位線,∴EF∥BC,∴∠AEF=∠B=55°,故選:C.【點睛】本題考查了三角形中位線定理以及平行線的性質(zhì);熟練掌握三角形中位線定理,證出EF∥BC是解題的關(guān)鍵.2、B【解析】【分析】連接AC,由平行四邊形的性質(zhì)可得,再由E、F分別是BC,CD的中點,即可得到,,,由此求解即可.【詳解】解:如圖所示,連接AC,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,AB=CD,AB∥CD,∴∵E、F分別是BC,CD的中點,∴,,,∴,故選B.【點睛】本題主要考查了平行四邊形的性質(zhì),與三角形中線有關(guān)的面積問題,解題的關(guān)鍵在于能夠熟練掌握平行四邊形的性質(zhì).3、C【解析】【分析】根據(jù)平行四邊形的性質(zhì),可得AB=CD,BC=AD,然后設(shè),可得到,即可求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB=CD,BC=AD,∵AB:BC=3:5,∴可設(shè),∵的周長為32cm,∴,即,解得:,∴.故選:C【點睛】本題主要考查了平行四邊形的性質(zhì),熟練掌握平行四邊形的對邊相等是解題的關(guān)鍵.4、C【解析】【分析】依題意得出AE=AB=AD,∠ADE=50°,又因為∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,從而求解.【詳解】∵ADBC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC-∠ADE=30°.故選:C.【點睛】考查菱形的邊的性質(zhì),同時綜合利用三角形的內(nèi)角和及等腰三角形的性質(zhì),解題關(guān)鍵是利用等腰三角形的性質(zhì)求得∠ADE的度數(shù).5、B【解析】【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,再利用三角形中位線定理可得DE=4,進而可得答案.【詳解】解:∵D為AB中點,∠AFB=90°,AB=5,∴,∵DE是△ABC的中位線,BC=8,∴DE=4,∴EF=4﹣2.5=1.5,故選:B.【點睛】此題主要考查了直角三角形的性質(zhì)和三角形中位線定理,三角形的中位線平行于第三邊,并且等于第三邊的一半.二、填空題1、【解析】【分析】過點E作EF⊥AD于點F,先證明CG=AG,再利用勾股定理列方程,求出AG的值,結(jié)合三角形的面積法和勾股定理,即可求解.【詳解】解:如圖所示:過點E作EF⊥AD于點F,有折疊的性質(zhì)可知:∠ACB=∠ACE,∵AD∥BC,∴∠ACB=∠CAD,∴∠CAD=∠ACE,∴CG=AG,設(shè)CG=x,則DG=8-x,∵在中,,∴x=5,∴AG=5,在中,EG=,EF⊥AD,∠AEG=90°,∴,∵在中,,、∴DF=8-=,∴在中,,故答案是:.【點睛】本題主要考查矩形的性質(zhì),折疊的性質(zhì),勾股定理,等腰三角形的判定定理,添加輔助線構(gòu)造直角三角形,是解題的關(guān)鍵.2、【解析】【分析】由“AAS”可證△ACP≌△CBQ,可得AP=CQ,PC=BQ,由“AAS”可證△APO≌△BHO,可得AP=BH,OP=OH,由等腰直角三角形的性質(zhì)和直角三角形的性質(zhì)可求解.【詳解】解:如圖,連接PO,并延長交l2于點H,∵l1⊥l3,l2⊥l3,∴l(xiāng)1∥l3,∠APC=∠BQC=∠ACB=90°,∴∠PAC+∠ACP=90°=∠ACP+∠BCQ,∴∠PAC=∠BCQ,在△ACP和△CBQ中,,∴△ACP≌△CBQ(AAS),∴AP=CQ,PC=BQ,∴PC+CQ=AP+BQ=PQ=,∵AP∥BQ,∴∠OAP=∠OBH,∵點O是斜邊AB的中點,∴AO=BO,在△APO和△BHO中,,∴△APO≌△BHO(AAS),∴AP=BH,OP=OH,∴BH+BQ=AP+BQ=PQ,∴PQ=QH=,∵∠PQH=90°,∴PH=PQ=12,∵OP=OH,∠PQH=90°,∴OQ=PH=6.故答案為:6【點睛】本題主要考查了全等三角形的判定和性質(zhì),等腰三角形和直角三角形的性質(zhì),熟練掌握全等三角形的判定和性質(zhì)定理,等腰三角形和直角三角形的性質(zhì)定理是解題的關(guān)鍵.3、【解析】【分析】設(shè)BF=x,則FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,從而得到關(guān)于x的方程,求解x即可.【詳解】解:設(shè)BF=x,則FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根據(jù)折疊的性質(zhì)可知AG=AB=4,所以GE=2﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(2﹣4)2+x2=(4﹣x)2+22,解得x=﹣2,∴CF=4-(﹣2),故答案為:6-2.【點睛】本題主要考查了正方形的性質(zhì)及翻轉(zhuǎn)折疊的性質(zhì),勾股定理,拓展一元一次方程,準(zhǔn)確運用題目中的條件表示出EF列出方程式解題的關(guān)鍵.4、8【解析】【分析】運用三角形的中位線的知識解答即可.【詳解】解:∵△ABC中,D、E分別是AB、AC的中點∴DE是△ABC的中位線,∴BC=2DE=8cm.故答案是8.【點睛】本題主要考查了三角形的中位線,掌握三角形的中位線等于底邊的一半成為解答本題的關(guān)鍵.5、12【解析】【分析】據(jù)D、E、F分別是AB、AC、BC的中點,可以判斷DF、FE、DE為三角形中位線,利用中位線定理求出DF、FE、DE與AB、BC、CA的長度關(guān)系即可解答.【詳解】解:∵如圖所示,D、E、F分別是AB、BC、AC的中點,∴ED、FE、DF為△ABC中位線,∴DFBC,F(xiàn)EAB,DEAC,∴△DEF的周長=DF+FE+DEBCABAC(AB+BC+CA)24=12.故答案為:12.【點睛】本題考查了三角形的中位線定理,根據(jù)中點判斷出中位線,再利用中位線定理是解題的基本思路.三、解答題1、(1)證明見解析;(2)73°.【分析】(1)根據(jù)正方形的性質(zhì)及各角之間的關(guān)系可得:,由全等三角形的判定定理可得,再根據(jù)其性質(zhì)即可得證;(2)根據(jù)垂直及等腰三角形的性質(zhì)可得,再由三角形的外角的性質(zhì)可得,由此計算即可.【詳解】(1)證明:∵四邊形ABCD是正方形,∴,,∵,∴,∵°,,∴,在和中,,∴,∴;(2)解:∵BE⊥BF,∴,又∵,∴,∵四邊形ABCD是正方形,∴,∵,∴,∴.∴的值為.【點睛】題目主要考查全等三角形的判定和性質(zhì),正方形的性質(zhì),三角形的外角性質(zhì),理解題意,熟練運用各個定理性質(zhì)是解題關(guān)鍵.2、見解析【分析】先根據(jù)平行線的性質(zhì)得到∠DEC=∠BCE,∠DFC=∠GCF,再由角平分線的定義得到,,則∠DEC=∠DCE,∠DFC=∠DCF,推出DE=DC,DF=DC,則DE=DF,再由AD=CD,即可證明四邊形AECF是平行四邊形,再由∠ECF=∠DCE+∠DCF=,即可得證.【詳解】證明:∵PQ∥BC,∴∠DEC=∠BCE,∠DFC=∠GCF,∵CE平分∠BCA,CF平分∠ACG,∴,,∴∠DEC=∠DCE,∠DFC=∠DCF,∴DE=DC,DF=DC,∴DE=DF,∵點D是邊AC的中點,∴AD=CD,∴四邊形AECF是平行四邊形,∵∠BCA+∠ACG=180°,∴∠ECF=∠DCE+∠DCF=,∴平行四邊形AECF是矩形.【點睛】本題主要考查了矩形的判定,平行線的性質(zhì),角平分線的定義,等腰三角形的性質(zhì)與判定,等等,熟練掌握矩形的判定條件是解題的關(guān)鍵.3、(1)見解析;(2)16【分析】(1)根據(jù)平行四邊形的性質(zhì),可得OA=OC,OB=OD,從而得到OE=OG,OF=OH,即可求證;(2)根據(jù)三角形中位線定理,可得,從而得到,再由(1)四邊形EFGH是平行四邊形,即可求解.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵點E、F、G、H分別是OA、OB、OC、OD的中點,∴,∴OE=OG,OF=OH,∴四邊形EFGH是平行四邊形;(2)∵點E、F、G、H分別是OA、OB、OC、OD的中點,∴,∴,∵的周長為2(AB+BC)=32,∴,∴,由(1)知:四邊形EFGH是平行四邊形,∴四邊形EFGH的周長為.【點睛】本題主要考查了平行四邊形的判定和性質(zhì),三角形的中位線定理,熟練掌握平行四邊形的判定和性質(zhì)定理,三角形的中位線定理是解題的關(guān)鍵.4、(1),;(2)成立,證明見解析;(3)【分析】(1)由點E、F、D分別是AB、AC、BC的中點,可得,,,,再由,,得,,由此即可得到答案;(2)連接,只需要證明,得到,,即可得到結(jié)論;(3)連接AD,證明△BDE≌△ADF得到,則,由此求解即可.【詳解】解:(1)∵點E、F、D分別是AB、AC、BC的中點,∴,,,,∵,,∴,,∴即,故答案為:,;(2)結(jié)論成立:,,證明:如圖所示,連接,∵,,D為BC的中點,∴,且AD平分,,∴,在和中,,∴,∴,,∵,∴,即,即;(3)如圖所示,連接AD,∵,,D為BC的中點,∴∴,且AD平分,,∴,∴∠FAD=180°-∠CAD=135°,∠EBD=180°-∠ABC=135°,∴∠FAD=∠EBD,在在和中,,∴△BDE≌△ADF(SAS),∴,∴,∵,∴,∴,∴【點睛】本題主要考查了三角形中位線定理,全等三角形的性質(zhì)與判定,等腰直角三角形的性質(zhì)等等,解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.5、(1)見解析;(2)DECF,DEFB,EGCF,AEFD【分析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 職業(yè)指導(dǎo)師崗前崗位安全考核試卷含答案
- 潤滑油加氫裝置操作工安全素養(yǎng)知識考核試卷含答案
- 電子設(shè)備調(diào)試工操作水平模擬考核試卷含答案
- 白酒發(fā)酵工安全專項知識考核試卷含答案
- 油氣管道維護工安全生產(chǎn)能力競賽考核試卷含答案
- 調(diào)配香精配制工操作水平強化考核試卷含答案
- 2026云南臨滄市桑嘎藝術(shù)學(xué)校教師招聘9人備考題庫完整參考答案詳解
- 《育兒常見問題解答》
- 新生兒皮膚護理與常見問題處理
- 2026年及未來5年市場數(shù)據(jù)中國B超診斷儀行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略咨詢報告
- 風(fēng)電項目質(zhì)量管理
- 靜脈輸液操作規(guī)范與并發(fā)癥預(yù)防指南
- 臨床正確標(biāo)本采集規(guī)范
- 福建省福州市福清市2024-2025學(xué)年二年級上學(xué)期期末考試語文試卷
- 2025年CAR-NK細(xì)胞治療臨床前數(shù)據(jù)
- 班團活動設(shè)計
- 基金通道業(yè)務(wù)合同協(xié)議
- 黨參對人體各系統(tǒng)作用的現(xiàn)代藥理研究進展
- 交通銀行理財合同范本
- 林業(yè)結(jié)構(gòu)化面試題庫及答案
- 肺結(jié)節(jié)的影像學(xué)表現(xiàn)
評論
0/150
提交評論