版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省恩平市中考數(shù)學真題分類(平行線的證明)匯編章節(jié)測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,已知△ABC中,BD、CE分別是邊AC、AB上的高,BD與CE交于O點,如果設∠BAC=n°,那么用含n的代數(shù)式表示∠BOC的度數(shù)是()A.45°+n° B.90°﹣n° C.90°+n° D.180°﹣n°2、如圖,點是中邊上的一點,過作,垂足為.若,則是(
)A.直角三角形 B.銳角三角形 C.鈍角三角形 D.無法確定3、如圖,與交于點,,則的度數(shù)為()A. B. C. D.4、將一副學生用的三角板(一個銳角為30°的直角三角形,一個銳角為45°的直角三角形)如圖疊放,則下列4個結論中正確的個數(shù)有(
)①∠AOC+∠BOD=90°;②∠AOC=∠BOD;③∠AOC-∠CEA=15°;④如果OB平分∠DOC,則OC平分∠AOBA.0 B.1 C.2 D.35、如圖7,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠1+∠2=90°,M,N分別是BA,CD延長線上的點,∠EAM和∠EDN的平分線交于點F.下列結論:①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;④∠F=135°,其中正確的有()A.1個 B.2個 C.3個 D.4個6、如圖四邊形ABCD中,,將四邊形沿對角線AC折疊,使點B落在點處,若∠1=∠2=44°,則∠B為(
).A.66° B.104° C.114° D.124°7、如圖,下列條件中,能判斷直線a∥b的有()個.①∠1=∠4;②∠3=∠5;③∠2+∠5=180°;④∠2+∠4=180°A.1 B.2 C.3 D.48、在中,,則為(
)三角形.A.銳角 B.直角 C.鈍角 D.等腰第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,在中,,將沿直線m翻折,點B落在點D的位置,則__________.2、如圖,AF,AD分別是△ABC的高和角平分線,且∠B=36°,∠C=76°,則∠DAF=_____度.3、如圖,在四邊形ABCD中,∠BCD=50°,∠B=∠D=90°,在BC、CD上分別取一點M、N,使△AMN的周長最小,則∠MAN=_____°.4、請寫出命題“如果,那么”的逆命題:________.5、如圖,將三角形紙片ABC按如圖方式折疊:折痕分別為DC和DE,點A與BC邊上的點G重合,點B與DG延長線上的點F重合.若滿足∠ACB=40°,則∠CEF=_______度.6、請把以下說理過程補充完整:如圖,AB∥CD,∠C=∠D,如果∠1=∠2,那么∠E與∠C互為補角嗎?說說你的理由.解:因為∠1=∠2,根據___________,所以EF∥________.又因為AB∥CD,根據___________,所以EF∥________.根據____________,所以∠E+________=_________°.又因為∠C=∠D,所以∠E+________=_________°,所以∠E與∠C互為補角.7、如圖,一副三角板按如圖放置,則∠DOC的度數(shù)為______.三、解答題(7小題,每小題10分,共計70分)1、如圖,已知∠A=50°,∠D=40°.(1)求∠1度數(shù);(2)求∠A+∠B+∠C+∠D+∠E的度數(shù).2、指出下列命題的題設和結論,并判斷它們是真命題還是假命題,如果是假命題,舉出一個反例.(1)兩個角的和等于平角時,這兩個角互為補角;(2)內錯角相等;(3)兩條平行線被第三條直線所截,內錯角相等.3、已知:如圖,點A、B、C在一條直線上,AD∥BE,∠1=∠2,求證:∠A=∠E.4、在①DE=BC,②,③AE=AC這三個條件中選擇其中一個,補充在下面的問題中,并完成問題的解答.問題:如圖,AC平分,D是AC上的一點,.若______,求證:.5、【教材呈現(xiàn)】如圖是華師版七年級下冊數(shù)學教材第76頁的部分內容.請根據教材提示,結合圖①,將證明過程補充完整.【結論應用】(1)如圖②,在△中,∠=60°,平分∠,平分∠,求∠的度數(shù).(2)如圖③,將△的∠折疊,使點落在△外的點處,折痕為.若∠=,∠=,∠=,則、、滿足的等量關系為(用、、的代數(shù)式表示).6、如圖,AB//CD,AE平分∠BAD,CD與AE相交于F,∠CFE=∠E.求證:AD//BC.7、點E在射線DA上,點F、G為射線BC.上兩個動點,滿足∠DBF=∠DEF,∠BDG=∠BGD,DG平分∠BDE.(1)如圖,當點G在F右側時,求證:;(2)如圖,當點G在BF左側時,求證:;(3)如圖,在(2)的條件下,P為BD延長線上一點,DM平分∠BDG,交BC于點M,DN平分∠PDM,交EF于點N,連接NG,若DG⊥NG,,求∠B的度數(shù).-參考答案-一、單選題1、D【解析】【分析】由垂直的定義得到∠ADB=∠BDC=90,再根據三角形內角和定理得∠ABD=180﹣∠ADB﹣∠A=90﹣n,然后根據三角形的外角性質有∠BOC=∠EBD+∠BEO,計算即可得到∠BOC的度數(shù).【詳解】解:∵BD、CE分別是邊AC,AB上的高,∴∠ADB=∠BDC=90,又∵∠BAC=n,∴∠ABD=180°﹣∠ADB﹣∠A=180﹣90﹣n=90﹣n,∴∠BOC=∠EBD+∠BEO=90°﹣n+90°=180﹣n.故選:D.【考點】本題考查了三角形的外角性質,垂直的定義以及三角形內角和定理,掌握以上性質定理是解答本題的關鍵.2、A【解析】【分析】先求解再證明可得從而可得結論.【詳解】解:是直角三角形.故選A【考點】本題考查的是垂直的定義,三角形的內角和定理的應用,掌握“三角形的內角和定理”是解本題的關鍵.3、A【解析】【分析】先根據三角形的內角和定理可求出,再根據平行線的性質即可得.【詳解】故選:A.【考點】本題考查了三角形的內角和定理、平行線的性質,熟記平行線的性質是解題關鍵.4、D【解析】【分析】根據同角的余角相等可得∠AOC=∠BOD;根據三角形的內角和即可得出∠AOC-∠CEA=15°;根據角平分線的定義可判定OC平分∠AOB.【詳解】解:∵∠DOC=∠AOB=90°,∴∠DOC-∠BOC=∠AOB-∠COB,即∠BOD=∠AOC,故②正確;如圖,AB與OC交于點P,∵∠CPE=∠APO,∠C=45°,∠A=30°,∠CEA+∠CPE+∠C=∠AOC+∠APO+∠A=180°,∴∠AOC-∠CEA=15°.故③正確;如果OB平分∠DOC,則∠DOB=∠BOC=45°,則∠AOC=∠BOC=45°,故OC平分∠AOB,故④正確;由②知:∠AOC=∠BOD,故當∠AOC=∠BOD=45°時,∠AOC+∠BOD=90°成立,否則不成立,故①不正確;綜上,②③④正確,共3個,故選:D.【考點】本題考查了余角以及三角形內角和定理,角平分線的定義,熟知余角的性質以及三角形內角和是180°是解答此題的關鍵.5、C【解析】【分析】先根據AB⊥BC,AE平分∠BAD交BC于點E,AE⊥DE,∠1+∠2=90°,∠EAM和∠EDN的平分線交于點F,由三角形內角和定理以及平行線的性質即可得出結論.【詳解】解:標注角度如圖所示:∵AB⊥BC,AE⊥DE,∴∠1+∠AEB=90°,∠DEC+∠AEB=90°,∴∠1=∠DEC,又∵∠1+∠2=90°,∴∠DEC+∠2=90°,∴∠C=90°,∴∠B+∠C=180°,∴AB∥CD,故①正確;∴∠ADN=∠BAD,∵∠ADC+∠ADN=180°,∴∠BAD+∠ADC=180°,又∵∠AEB≠∠BAD,∴AEB+∠ADC≠180°,故②錯誤;∵∠4+∠3=90°,∠2+∠1=90°,而∠3=∠1,∴∠2=∠4,∴ED平分∠ADC,故③正確;∵∠1+∠2=90°,∴∠EAM+∠EDN=360°-90°=270°.∵∠EAM和∠EDN的平分線交于點F,∴∠EAF+∠EDF=×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°-90°=45°,∴∠F=180°-(∠FAD+∠FDA)=180-45°=135°,故④正確.故選:C.【考點】本題主要考查了平行線的性質與判定、三角形內角和定理、直角三角形的性質及角平分線的計算,解題的關鍵是熟知三角形的內角和等于180°.6、C【解析】【分析】根據兩直線平行,內錯角相等可得,根據翻折變換的性質可得,然后求出∠BAC,再根據三角形的內角和等于180°列式計算即可得解.【詳解】解:在ABCD中,,∴,∵ABCD沿對角線AC折疊,使點B落在點處,∴,∴,在△ABC中,∠B=180°-∠BAC-∠2=180°-22°-44°=114°.故選C.【考點】本題考查了翻折變換的性質,平行線的性質,三角形的內角和定理,掌握“翻折前后對應邊相等,對應角相等”是解本題的關鍵.7、C【解析】【分析】根據平行線的判定方法,對各選項分析判斷后利用排除法求解.【詳解】解:①∵∠1=∠4,∴a∥b(內錯角相等,兩直線平行);②∵∠3=∠5,∴a∥b(同位角相等,兩直線平行),③∵∠2+∠5=180°,∴a∥b(同旁內角互補,兩直線平行);④∠2和∠4不是同旁內角,所以∠2+∠4=180°不能判定直線a∥b.∴能判斷直線a∥b的有①②③,共3個.故選C.【考點】本題考查了平行線的判定,只有同位角相等、內錯角相等、同旁內角互補,才能推出兩被截直線平行,解題時要認準各角的位置關系.8、B【解析】【分析】根據分別設出三個角的度數(shù),再根據三角形的內角和為180°列出一個方程,解此方程即可得出答案.【詳解】∵∴可設∠A=x,∠B=2x,∠C=3x根據三角形的內角和可得:x+2x+3x=180°解得:x=30°∴∠A=30°,∠B=60°,∠C=90°因此△ABC是直角三角形故答案選擇B.【考點】本題主要考查的是三角形的基本概念.二、填空題1、【解析】【分析】根據折疊得出∠D=∠B=28°,根據三角形的外角性質得出∠1=∠B+∠BEF,∠BEF=∠2+∠D,求出∠1=∠B+∠2+∠D即可.【詳解】解:如圖,∵∠B=28°,將△ABC沿直線m翻折,點B落在點D的位置,∴∠D=∠B=28°,∵∠1=∠B+∠BEF,∠BEF=∠2+∠D,∴∠1=∠B+∠2+∠D,∴∠1-∠2=∠B+∠D=28°+28°=56°,故答案為:.【考點】本題考查了三角形的外角性質和折疊的性質,能熟記三角形的外角性質是解此題的關鍵,注意:三角形的一個外角等于與它不相鄰的兩個內角的和.2、20【解析】【分析】根據角平分線的定義和高的定義結合三角形的內角和定理來解答.【詳解】解:∵∠B=36°,∠C=76°,∴∠BAC=180﹣∠B﹣∠C=180°﹣76°﹣36°=68°,又∵AD是∠BAC的平分線,∴∠CAD=68°×=34°,在Rt△AFC中,∠FAC=90﹣∠C=90°﹣76°=14°,于是∠DAF=34°﹣14°=20°.故答案為:20.【考點】本題主要考查了角平分線、三角形高的定義和三角形的內角和定理.3、80【解析】【分析】作點A關于BC、CD的對稱點A1、A2,根據軸對稱確定最短路線問題,連接A1、A2分別交BC、DC于點M、N,利用三角形的內角和定理列式求出∠A1+∠A2,再根據軸對稱的性質和角的和差關系即可得∠MAN.【詳解】如圖,作點A關于BC、CD的對稱點A1、A2,連接A1、A2分別交BC、DC于點M、N,連接AM、AN,則此時△AMN的周長最小,∵∠BCD=50°,∠B=∠D=90°,∴∠BAD=360°﹣90°﹣90°﹣50°=130°,∴∠A1+∠A2=180°﹣130°=50°,∵點A關于BC、CD的對稱點為A1、A2,∴NA=NA2,MA=MA1,∴∠A2=∠NAD,∠A1=∠MAB,∴∠NAD+∠MAB=∠A1+∠A2=50°,∴∠MAN=∠BAD﹣(∠NAD+∠MAB)=130°﹣50°=80°,故答案為:80.【考點】本題考查了軸對稱的最短路徑問題,利用軸對稱將三角形周長問題轉化為兩點間線段最短問題是解決本題的關鍵.4、如果,那么【解析】【分析】根據逆命題的概念解答即可.【詳解】解:命題“如果,那么”的逆命題是“如果,那么”,故答案為:如果,那么.【考點】此題考查了互逆命題的知識,兩個命題中,如果第一個命題的條件是第二個命題的結論,而第一個命題的結論又是第二個命題的條件,那么這兩個命題叫做互逆命題.其中一個命題稱為另一個命題的逆命題.5、40【解析】【詳解】由折疊可得∠EDC=90°,∠BED=∠FED,由角平分線和三角形內角和得∠DEC=70°,再利用三角形外角的性質可得答案.【解答】解:由折疊可得:∠EDF=,,∵∠BDF+∠GDA=180°,∴∠EDF+∠GDC=90°,∵∠ACB=40°,∴∠GCD=40÷2=20°,∴∠DEC=180°﹣90°﹣20°=70°,由折疊可得:∠BED=∠DEF=70°+∠CEF,由三角形外角的性質可得,∠BED=90°+20°=110°,∴70°+∠CEF=110°,即∠CEF=40°.故答案為:40.【考點】本題考查圖形的折疊,熟知折疊前后圖形的形狀和大小相等、得到∠BED=∠DEF并利用三角形內角和是解本題的關鍵,屬于常見題型.6、內錯角相等,兩直線平行;AB;平行于同一條直線的兩條直線平行;CD;兩直線平行,同旁內角互補;∠D;180;∠C;180【解析】【分析】由已知角相等,利用內錯角相等兩直線平行得到AB與EF平行,再由AB與CD平行,利用平行于同一條直線的兩直線平行即可得EF與CD平行,然后由兩直線平行,同旁內角互補可得∠E+∠D=180°,最后等量代換得到∠E+∠C=180°.【詳解】解:因為∠1=∠2,根據_內錯角相等,兩直線平行,所以EF∥__AB_.又因為AB∥CD,根據_平行于同一條直線的兩條直線平行,所以EF∥__CD___.根據兩直線平行,同旁內角互補,所以∠E+_∠D=__180°.又因為∠C=∠D,所以∠E+_∠C_=_180°,所以∠E與∠C互為補角.【考點】此題考查了平行線的判定與性質,熟練掌握平行線的判定與性質是解本題的關鍵.7、【解析】【分析】根據題意得:∠ACB=30°,∠ACD=45°,∠D=90°,從而得到∠OCD=15°,再由再由直角三角形兩銳角互余,即可求解.【詳解】解:根據題意得:∠ACB=30°,∠ACD=45°,∠D=90°,∴∠OCD=∠ACD-∠ACB=15°,∴∠DOC=90°-∠OCD=75°.故答案為:75°【考點】本題主要考查了直角三角形的性質,根據題意得到∠ACB=30°,∠ACD=45°,∠D=90°是解題的關鍵.三、解答題1、(1)(2)【解析】【分析】(1)根據三角形的外角的性質即可得到結論;(2)設∠1的同旁內角為∠2,根據三角形的一個外角等于與它不相鄰的兩個內角的和可得∠1=∠A+∠C,∠2=∠B+∠D,然后利用三角形的內角和定理列式計算即可得解.(1)∠1=∠A+∠D=90°;,(2)設∠1的同旁內角為∠2,如圖,∵∠1=∠A+∠D,∠2=∠B+∠E,∠1+∠2+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°.【考點】本題考查了三角形的一個外角等于與它不相鄰的兩個內角的和的性質,三角形的內角和定理,熟記性質并準確識圖是解題的關鍵.2、(1)題設:如果兩個角的和等于平角時,結論:那么這兩個角互為補角;是真命題;(2)題設:如果兩個角是內錯角,那么這兩個角相等;是假命題,反例見解析;(3)題設:如果兩條平行線被第三條直線所截,結論:那么內錯角相等.是真命題.【解析】【分析】(1)根據將命題寫成“如果…,那么…”的形式,“如果”后面寫題設,“那么”后面寫結論可得題設和結論,根據平角的定義可得該命題是真命題;(2)根據將命題寫成“如果…,那么…”的形式,“如果”后面寫題設,“那么”后面寫結論可得題設和結論,根據平行線的性質可得該命題是假命題;利用相交直線被第三條直線所截,內錯角不相等可舉反例;(3)根據將命題寫成“如果…,那么…”的形式,“如果”后面寫題設,“那么”后面寫結論可得題設和結論,根據平行線的性質可得該命題是真命題;.【詳解】(1)題設:如果兩個角的和等于平角,結論:那么這兩個角互為補角;是真命題;(2)題設:如果兩個角是內錯角,那么這兩個角相等;是假命題,如圖∠1與∠2是內錯角,∠2>∠1;(3)題設:如果兩條平行線被第三條直線所截,結論:那么內錯角相等.是真命題.【考點】本題考查了命題與定理的相關知識.將命題寫成“如果…,那么…”的形式,就是要明確命題的題設和結論,“如果”后面寫題設,“那么”后面寫結論.關鍵是明確命題與定理的組成部分,會判斷命題的題設與結論.3、見解析【解析】【分析】先根據平行線的性質由AD∥BE得∠A=∠EBC,再根據平行線的判定由∠1=∠2得DE∥AC,則∠E=∠EBC,所以∠A=∠E.【詳解】證明:∵AD∥BE,∴∠A=∠EBC,∵∠1=∠2,∴DE∥AC,∴∠E=∠EBC,∴∠A=∠E.【考點】考查了平行線性質:兩直線平行,同位角相等;兩直線平行,同旁內角互補;兩直線平行,內錯角相等.4、證明見解析【解析】【分析】選②,根據角平分線的性質可得∠EAD=∠BAC.由三角形的內角和定理可得,,即可求解,若選③,證明,即可求解.【詳解】若選②;證明:∵AC平分∠BAE,∴∠EAD=∠BAC.∵∠E=∠C,∴.∵,.∴∠ADE=∠ABC.若選③,證明:∵AC平分∠BAE,∴.在△ABC和△ADE中,∴.∴.【考點】本題考查了三角形的內角和定理,三角形求得的性質與判定,綜合運用以上知識是解題的關鍵.5、教材呈現(xiàn):見解析;(1)120°;(2)【解析】【分析】【教材呈現(xiàn)】利用兩直線平行,同位角相等,內錯角相等,把三角形三個內角轉化成一個平角,從而得證.【結論應用】(1)利用角平分線的性質得出兩個底角之和,從而求出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 核心素養(yǎng)導向教學
- 《GB-T 28200-2011鋼制儲物柜(架)技術要求及試驗方法》專題研究報告
- GBT 19290.7-2021發(fā)展中的電子設備構體機械結構模數(shù)序列 第2-5部分:分規(guī)范 25 mm設備構體的接口協(xié)調尺寸 各種設備用機柜接口尺寸專題研究報告
- 《寵物鑒賞》課件-寵物鳥的簡介
- 2026年安徽省馬鞍山市單招職業(yè)傾向性測試題庫及參考答案詳解一套
- 心血管留圖資料
- 云數(shù)據庫運維服務合同
- 智能電表調試技師(初級)考試試卷及答案
- 種子包裝設計行業(yè)種子包裝設計師(蔬菜)崗位招聘考試試卷及答案
- (2025)全國勞動保障知識競賽題庫與參考答案
- 2025年煙花爆竹經營單位安全管理人員考試試題及答案
- 2025天津大學管理崗位集中招聘15人參考筆試試題及答案解析
- 2025廣東廣州黃埔區(qū)第二次招聘社區(qū)專職工作人員50人考試筆試備考題庫及答案解析
- 2025年云南省人民檢察院聘用制書記員招聘(22人)考試筆試參考題庫及答案解析
- 旋挖鉆機地基承載力驗算2017.7
- xx鄉(xiāng)鎮(zhèn)衛(wèi)生院重癥精神病管理流程圖
- 2023年印江縣人民醫(yī)院緊缺醫(yī)學專業(yè)人才招聘考試歷年高頻考點試題含答案解析
- 安徽綠沃循環(huán)能源科技有限公司12000t-a鋰離子電池高值資源化回收利用項目(重新報批)環(huán)境影響報告書
- 《汽車電器故障問題研究4600字(論文)》
- 公路工程標準施工招標文件第八章-工程量清單計量規(guī)則(2018年版最終稿)
- DB44-T 2197-2019配電房運維服務規(guī)范-(高清現(xiàn)行)
評論
0/150
提交評論