版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
中考數(shù)學總復習《圓》試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,⊙O的半徑為5cm,直線l到點O的距離OM=3cm,點A在l上,AM=3.8cm,則點A與⊙O的位置關系是(
)A.在⊙O內 B.在⊙O上 C.在⊙O外 D.以上都有可能2、如圖,一個油桶靠在直立的墻邊,量得并且則這個油桶的底面半徑是()A. B. C. D.3、一個點到圓的最大距離為11cm,最小距離為5cm,則圓的半徑為(
)A.16cm或6cm B.3cm或8cm C.3cm D.8cm4、已知圓內接正三角形的面積為,則該圓的內接正六邊形的邊心距是()A. B. C. D.5、如圖,AB是⊙O的直徑,BC與⊙O相切于點B,AC交⊙O于點D,若∠ACB=50°,則∠BOD等于()A.40° B.50° C.60° D.80°第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在的方格紙中,每個小方格都是邊長為1的正方形,其中A、B、C為格點,作的外接圓,則的長等于_____.2、如圖,是的外接圓的直徑,若,則______.3、如圖,⊙O的直徑AB=26,弦CD⊥AB,垂足為E,OE:BE=5:8,則CD的長為______.4、如圖,是的內接正三角形,點是圓心,點,分別在邊,上,若,則的度數(shù)是____度.5、如圖,已知正六邊形ABCDEF的邊長為2,對角線CF和BE相交于點N,對角線DF與BE相交于點M,則MN=_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,AB是⊙O的直徑,D,E為⊙O上位于AB異側的兩點,連接BD并延長至點C,使得CD=BD,連接AC交⊙O于點F,連接AE,DE,DF.(1)證明:∠E=∠C;(2)若∠E=55°,求∠BDF的度數(shù).2、如圖,OC為⊙O的半徑,弦AB⊥OC于點D,OC=10,CD=4,求AB的長.3、已知圓弧的半徑為15厘米,圓弧的長度為,求圓心角的度數(shù).4、如圖,正方形ABCD的外接圓為⊙O,點P在劣弧CD上(不與C點重合).(1)求∠BPC的度數(shù);(2)若⊙O的半徑為8,求正方形ABCD的邊長.5、如圖,四邊形ABCD內接于⊙O,AB為⊙O的直徑,過點C作CE⊥AD交AD的延長線于點E,延長EC,AB交于點F,∠ECD=∠BCF.(1)求證:CE為⊙O的切線;(2)若DE=1,CD=3,求⊙O的半徑.-參考答案-一、單選題1、A【解析】【詳解】如圖,連接OA,則在直角△OMA中,根據(jù)勾股定理得到OA=.∴點A與⊙O的位置關系是:點A在⊙O內.故選A.2、C【解析】【分析】根據(jù)切線的性質,連接過切點的半徑,構造正方形求解即可.【詳解】如圖所示:設油桶所在的圓心為O,連接OA,OC,∵AB、BC與⊙O相切于點A、C,∴OA⊥AB,OC⊥BC,又∵AB⊥BC,OA=OC,∴四邊形OABC是正方形,∴OA=AB=BC=OC=0.8m,故選:C.【考點】考查了切線的性質和正方形的判定、性質,解題關鍵是理解和掌握切線的性質.3、B【解析】【分析】最大距離與最小距離的和是直徑;當點P在圓外時,點到圓的最大距離與最小距離的差是直徑,由此得解.【詳解】當點P在圓內時,最近點的距離為5cm,最遠點的距離為11cm,則直徑是16cm,因而半徑是8cm;當點P在圓外時,最近點的距離為5cm,最遠點的距離為11cm,則直徑是6cm,因而半徑是3cm;故選B.【考點】本題考查了點與圓的位置關系,利用線段的和差得出直徑是解題關鍵,分類討論,以防遺漏.4、B【解析】【分析】根據(jù)題意可以求得半徑,進而解答即可.【詳解】因為圓內接正三角形的面積為,所以圓的半徑為,所以該圓的內接正六邊形的邊心距×sin60°=×=1,故選B.【考點】本題考查正多邊形和圓,解答本題的關鍵是明確題意,求出相應的圖形的邊心距.5、D【解析】【分析】根據(jù)切線的性質得到∠ABC=90°,根據(jù)直角三角形的性質求出∠A,根據(jù)圓周角定理計算即可.【詳解】∵BC是⊙O的切線,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圓周角定理得,∠BOD=2∠A=80°,故選D.【考點】本題考查的是切線的性質、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關鍵.二、填空題1、【解析】【分析】由AB、BC、AC長可推導出△ACB為等腰直角三角形,連接OC,得出∠BOC=90°,計算出OB的長就能利用弧長公式求出的長了.【詳解】∵每個小方格都是邊長為1的正方形,∴AB=2,AC=,BC=,∴AC2+BC2=AB2,∴△ACB為等腰直角三角形,∴∠A=∠B=45°,∴連接OC,則∠COB=90°,∵OB=∴的長為:=故答案為:.【考點】本題考查了弧長的計算以及圓周角定理,解題關鍵是利用三角形三邊長通過勾股定理逆定理得出△ACB為等腰直角三角形.2、【解析】【分析】連接BD,如圖,根據(jù)圓周角定理得到∠ABD=90°,則利用互余計算出∠D=50°,然后再利用圓周角定理得到∠ACB的度數(shù).【詳解】連接BD,如圖,∵AD為△ABC的外接圓⊙O的直徑,∴∠ABD=90°,∴∠D=90°-∠BAD=90°-40°=50°,∴∠ACB=∠D=50°.故答案為:50.【考點】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.3、24【解析】【分析】連接OC,由題意得OE=5,BE=8,再由垂徑定理得CE=DE,∠OEC=90°,然后由勾股定理求出CE=12,即可求解.【詳解】解:連接OC,如圖所示:∵直徑AB=26,∴OC=OB=13,∵OE:BE=5:8,∴OE=5,BE=8,∵弦CD⊥AB,∴CE=DE,∠OEC=90°,∴CE==12,∴CD=2CE=24,故答案為:24.【考點】本題考查的是垂徑定理、勾股定理等知識,熟練掌握垂徑定理,由勾股定理求出CE的長是解題的關鍵.4、120【解析】【分析】本題可通過構造輔助線,利用垂徑定理證明角等,繼而利用SAS定理證明三角形全等,最后根據(jù)角的互換結合同弧所對的圓周角等于圓心角的一半求解本題.【詳解】連接OA,OB,作OH⊥AC,OM⊥AB,如下圖所示:因為等邊三角形ABC,OH⊥AC,OM⊥AB,由垂徑定理得:AH=AM,又因為OA=OA,故△OAH△OAM(HL).∴∠OAH=∠OAM.又∵OA=OB,AD=EB,∴∠OAB=∠OBA=∠OAD,∴△ODA△OEB(SAS),∴∠DOA=∠EOB,∴∠DOE=∠DOA+∠AOE=∠AOE+∠EOB=∠AOB.又∵∠C=60°以及同弧,∴∠AOB=∠DOE=120°.故本題答案為:120.【考點】本題考查圓與等邊三角形的綜合,本題目需要根據(jù)等角的互換將所求問題進行轉化,構造輔助線是本題難點,全等以及垂徑定理的應用在圓綜合題目極為常見,圓心角、弧、圓周角的關系需熟練掌握.5、1【解析】【分析】根據(jù)正六邊形的性質和直角三角形的性質即可得到結論.【詳解】∵正六邊形ABCDEF的邊長為2,且對角線CF和BE相交于點N,∴∠FNE=60°,∴△ENF是等邊三角形,∴∠FNM=60°,F(xiàn)N=EF=2,∵對角線DF與BE相交于點M,∴∠FMN=90°,∴MN=FN=2=1,故答案為:1.【考點】本題考查了正多邊形和圓,正六邊形的性質,直角三角形的性質,正確的識別圖形是解題的關鍵.三、解答題1、(1)詳見解析;(2)110°.【解析】【分析】(1)連接AD,利用直徑所對的圓周角為直角,可得AD⊥BC,再根據(jù)CD=BD,故AD垂直平分BC,根據(jù)垂直平分線上的點到線段兩個端點的距離相等,可得:AB=AC,再根據(jù)等邊對等角和同弧所對的圓周角相等即可得到∠E=∠C;(2)根據(jù)內接四邊形的性質:四邊形的外角等于它的內對角,可得∠CFD=∠E=55°,再利用外角的性質即可求出∠BDF.【詳解】(1)證明:連接AD,如圖所示:∵AB是⊙O的直徑,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,∵∠B=∠E,∴∠E=∠C;(2)解:∵四邊形AEDF是⊙O的內接四邊形,∴∠AFD=180°﹣∠E,∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=55°,由(1)得:∠E=∠C=55°,∴∠BDF=∠C+∠CFD=55°+55°=110°.【考點】此題考查的是(1)直徑所對的圓周角是直角、垂直平分線的性質和同弧所對的圓周角相等;(2)內接四邊形的性質.2、16【解析】【分析】連接OA,根據(jù)垂徑定理可得AB=2AD,再由勾股定理,可得AD=8,即可求解.【詳解】解:如圖,連接OA,∵OC為⊙O的半徑,弦AB⊥OC,∴AB=2AD,∵OC=10,CD=4,∴OA=OC=10,OD=OC-CD=6,在中,由勾股定理得:,∴AB=16.【考點】本題主要考查了垂徑定理,勾股定理,熟練掌握垂直弦的直徑平分這條弦,并且平分線所對的兩條弧是解題的關鍵.3、【解析】【分析】根據(jù)弧長的計算公式計算即可.【詳解】解:圓心角的度數(shù).【考點】本題考查弧長的計算,掌握弧長公式是解題的關鍵.4、(1)45°;(2)8【解析】【詳解】試題分析:(1)連接OB,OC,由正方形的性質知,是等腰直角三角形,根據(jù),由圓周角定理可以求出;(2)過點O作OE⊥BC于點E,由等腰直角三角形的性質可知OE=BE,由垂徑定理可知BC=2BE,故可得出結論.試題解析:(1)連接OB,OC,∵四邊形ABCD為正方形,∴∠BOC=90°,∴∠P=∠BOC=45°;(2)過點O作OE⊥BC于點E,∵OB=OC,∠BOC=90°,∴∠OBE=45°,∴OE=BE,∵OE2+BE2=OB2,∴BE=,∴BC=2BE=2×.點睛:垂徑定理:垂直于弦的直徑平分弦并且平分弦所對的兩條弧.5、(1)見解析;(2)⊙O的半徑是4.5【解析】【分析】(1)如圖1,連接OC,先根據(jù)四邊形ABCD內接于⊙O,得,再根據(jù)等量代換和直角三角形的性質可得,由切線的判定可得結論;(2)如圖2,過點O作于G,連接OC,OD,則,先根據(jù)三個角是直角的四邊形是矩形得四邊形OGEC是矩形,設⊙O的半徑
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026內蒙古呼和浩特市賽罕區(qū)烏尼爾東街幼兒園(公辦)招聘考試參考題庫及答案解析
- 四川中煙工業(yè)有限責任公司2026年度高層次人才招聘考試參考試題及答案解析
- 2026年寧德市職業(yè)教育集團招聘編外3人考試備考題庫及答案解析
- 2026年西安太白學校教師招聘考試參考題庫及答案解析
- 2026年湖南理工職業(yè)技術學院高職單招職業(yè)適應性考試備考題庫有答案解析
- 2026中國中煤黨校公開招聘8人考試參考試題及答案解析
- 全球Mini LED背光產業(yè)鏈高質量發(fā)展白皮書
- 2026漢中腦安康復醫(yī)院見習崗位招聘考試備考題庫及答案解析
- 2026廣東深圳市龍崗區(qū)某機關單位辦事員招聘1人考試備考題庫及答案解析
- 2026廣東茂名市信宜市選聘市外教師21人考試備考試題及答案解析
- 售后服務流程管理手冊
- 2020-2021學年新概念英語第二冊-Lesson14-同步習題(含答案)
- 醫(yī)院信訪維穩(wěn)工作計劃表格
- 地下車庫建筑結構設計土木工程畢業(yè)設計
- GB/T 2261.4-2003個人基本信息分類與代碼第4部分:從業(yè)狀況(個人身份)代碼
- GB/T 16601.1-2017激光器和激光相關設備激光損傷閾值測試方法第1部分:定義和總則
- PDM結構設計操作指南v1
- 投資學-課件(全)
- 獼猴桃優(yōu)質栽培關鍵技術課件
- 科目一駕考測試題100道
- 兒童吸入性肺炎的診斷與治療課件
評論
0/150
提交評論