版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計(jì)12分)1、將一元二次方程化成(a,b為常數(shù))的形式,則a,b的值分別是(
)A.,21 B.,11 C.4,21 D.,692、已知關(guān)于x的方程有一個(gè)根為1,則方程的另一個(gè)根為(
)A.-1 B.1 C.2 D.-23、如圖所示的幾何體的主視圖、左視圖、俯視圖中有兩個(gè)視圖是相同的,則相同的視圖是(
)A. B.C. D.4、反比例函數(shù)圖象的兩個(gè)分支分別位于第一、三象限,則一次函數(shù)的圖象大致是(
)A. B.C. D.5、如圖,在正方形ABCD中,點(diǎn)O是對(duì)角線AC的中點(diǎn),點(diǎn)E是邊BC上的一個(gè)動(dòng)點(diǎn),OE⊥OF,交邊AB于點(diǎn)F,點(diǎn)G,H分別是點(diǎn)E,F(xiàn)關(guān)于直線AC的對(duì)稱點(diǎn),點(diǎn)E從點(diǎn)C運(yùn)動(dòng)到點(diǎn)B時(shí),圖中陰影部分面積的大小變化是()A.先增大后減小 B.先減小后增大C.一直不變 D.不確定6、一元二次方程,用配方法解該方程,配方后的方程為()A. B.C. D.二、多選題(6小題,每小題2分,共計(jì)12分)1、F,且CE:AC=1:則下列結(jié)論正確的有(
)A.△CBE≌△CDEB.DE=FEC.AE=BED.S△BEF=S四邊形ABCD2.具備下列各組條件的兩個(gè)三角形中,一定相似的是(
)A.有一個(gè)角是40°的兩個(gè)等腰三角形 B.兩個(gè)等腰直角三角形C.有一個(gè)角為100°的兩個(gè)等腰三角形 D.兩個(gè)等邊三角形2、(多選)如圖,正方形ABCD的對(duì)角線AC,BD相交于D于點(diǎn)O,點(diǎn)P為線段AC上一點(diǎn),連接BP,過點(diǎn)P作交AD于點(diǎn)E,連接BE,若,,下列說法正確的有(
)A. B. C. D.3、如圖,在矩形、銳角三角形、正五邊形、直角三角形的外邊加一個(gè)寬度一樣的外框,保證外框的邊與原圖形的對(duì)應(yīng)邊平行,則外框與原圖一定相似的有()A. B.C. D.4、如圖,在△ABC中,點(diǎn)D,E分別在邊AB、AC上,下列條件中能判斷△AED∽△ABC的是()A.∠AED=∠ABC B.∠ADE=∠ACBC. D.5、如圖,在中,,,,將沿圖示中的虛線剪開,剪下的陰影三角形與原三角形不相似的是(
)A. B.C. D.6、如圖,在⊙O中,AB為直徑,BC為切線,弦ADOC,直線CD交BA的延長線于點(diǎn)E,連接BD.下列結(jié)論正確的是(
)A.CD是⊙O的切線 B.CO⊥DBC.△EDA∽△EBD D.第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計(jì)16分)1、若m,n是一元二次方程的兩個(gè)實(shí)數(shù)根,則的值為___________.2、如圖,正方形ABCO的邊長為,OA與x軸正半軸的夾角為15°,點(diǎn)B在第一象限,點(diǎn)D在x軸的負(fù)半軸上,且滿足∠BDO=15°,直線y=kx+b經(jīng)過B、D兩點(diǎn),則b﹣k=_____.3、如圖,在Rt△ABC中,∠ACB=90°,,點(diǎn)D為AB的中點(diǎn),點(diǎn)P在AC上,且CP=1,將CP繞點(diǎn)C在平面內(nèi)旋轉(zhuǎn),點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)Q,連接AQ,DQ.當(dāng)∠ADQ=90°時(shí),AQ的長為______.4、已知一元二次方程ax2+bx+c=0(a≠0),下列結(jié)論:①若方程兩根為-1和2,則2a+c=0;②若b>a+c,則方程有兩個(gè)不相等的實(shí)數(shù)根;③若b=2a+3c,則方程有兩個(gè)不相等的實(shí)數(shù)根;④若m是方程的一個(gè)根,則一定有b2-4ac=(2am+b)2成立.其中結(jié)論正確的序號(hào)是__________.5、小明的身高為1.6,他在陽光下的影長為2,此時(shí)他旁邊的旗桿的影長為15,則旗桿的高度為_______.6、已知,則的值為_____.7、如圖,D是的邊BC上一點(diǎn),,,.如果的面積為15,那么的面積為______.8、在平面直角坐標(biāo)系中,一次函數(shù)與反比例函數(shù)的圖象交于,兩點(diǎn),則的值是____________.四、解答題(6小題,每小題10分,共計(jì)60分)1、如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點(diǎn)D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將△ADE繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為θ.(1)[問題發(fā)現(xiàn)]①當(dāng)θ=0°時(shí),=;②當(dāng)θ=180°時(shí),=;(2)[拓展研究]試判斷:當(dāng)0°≤θ<360°時(shí),的大小有無變化?請(qǐng)僅就圖2的情形給出證明;(3)[問題解決]在旋轉(zhuǎn)過程中,BE的最大值為.2、如圖,在平面直角坐標(biāo)系中,△ABC的BC邊與x軸重合,頂點(diǎn)A在y軸的正半軸上,線段OB,OC()的長是關(guān)于x的方程的兩個(gè)根,且滿足CO=2AO.(1)求直線AC的解析式;(2)若P為直線AC上一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PD⊥x軸,垂足為D,PD與直線AB交于點(diǎn)Q,設(shè)△CPQ的面積為S(),點(diǎn)P的橫坐標(biāo)為a,求S與a的函數(shù)關(guān)系式;(3)點(diǎn)M的坐標(biāo)為,當(dāng)△MAB為直角三角形時(shí),直接寫出m的值.3、用指定方法解下列方程:(1)2x2-5x+1=0(公式法);(2)x2-8x+1=0(配方法).4、(1)證明推斷:如圖(1),在正方形中,點(diǎn),分別在邊,上,于點(diǎn),點(diǎn),分別在邊,上,.求證:;(2)類比探究:如圖(2),在矩形中,將矩形沿折疊,使點(diǎn)落在邊上的點(diǎn)處,得到四邊形,交于點(diǎn),連接交于點(diǎn).試探究與之間的數(shù)量關(guān)系,并說明理由;(3)拓展應(yīng)用:在(2)的條件下,連接,若,,求的長.5、已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)后,另外一點(diǎn)也隨之停止運(yùn)動(dòng).(1)如果P、Q分別從A、B同時(shí)出發(fā),那么幾秒后,△PBQ的面積等于4cm2?(2)在(1)中,△PQB的面積能否等于7cm2?請(qǐng)說明理由.6、如圖,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=6,AD平分∠BAC,交邊BC于點(diǎn)D,過點(diǎn)D作CA的平行線,交邊AB于點(diǎn)E.(1)求線段DE的長;(2)取線段AD的中點(diǎn)M,連接BM,交線段DE于點(diǎn)F,延長線段BM交邊AC于點(diǎn)G,求的值.-參考答案-一、單選題1、A【解析】【分析】根據(jù)配方法步驟解題即可.【詳解】解:移項(xiàng)得,配方得,即,∴a=-4,b=21.故選:A【考點(diǎn)】本題考查了配方法解一元二次方程,解題關(guān)鍵是配方:在二次項(xiàng)系數(shù)為1時(shí),方程兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.2、C【解析】【分析】根據(jù)根與系數(shù)的關(guān)系列出關(guān)于另一根t的方程,解方程即可.【詳解】解:設(shè)關(guān)于x的方程的另一個(gè)根為x=t,∴1+t=3,解得,t=2故選:C.【考點(diǎn)】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時(shí),x1+x2=?,x1x2=.3、B【解析】【分析】判斷出組合體的左視圖、主視圖及俯視圖,即可作出判斷.【詳解】解:幾何體的左視圖和主視圖是相同的,故選:B.【考點(diǎn)】本題考查了簡單組合體的三視圖,屬于基礎(chǔ)題,注意理解三視圖觀察的方向.4、D【解析】【分析】根據(jù)題意可得,進(jìn)而根據(jù)一次函數(shù)圖像的性質(zhì)可得的圖象的大致情況.【詳解】反比例函數(shù)圖象的兩個(gè)分支分別位于第一、三象限,∴一次函數(shù)的圖象與y軸交于負(fù)半軸,且經(jīng)過第一、三、四象限.觀察選項(xiàng)只有D選項(xiàng)符合.故選D【考點(diǎn)】本題考查了反比例函數(shù)的性質(zhì),一次函數(shù)圖像的性質(zhì),根據(jù)已知求得是解題的關(guān)鍵.5、C【解析】【分析】連接BD,證明△FOB≌△EOC,同理得到△HOD≌△GOC,即可得到答案.【詳解】解:連接BD,∵四邊形ABCD是正方形,∴∠BOC=90°,,∴∠BOЕ+∠EOC=90°,∵OE⊥OF,∴∠BOE+∠FOB=90°,∴∠FOB=∠EOC,在△FOB和△EOC,,∴△FOB≌△EOC,同理,△HOD≌△GOC,∴圖中陰影部分的面積=△ABD的面積=正方形ABCD的面積.∴陰影部分面積的大小一直不變.故選:C.【考點(diǎn)】本題考查的是正方形的性質(zhì)、全等三角形的判定和性質(zhì),掌握正方形的性質(zhì)、全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.6、D【解析】【分析】按照配方法的步驟,移項(xiàng),配方,配一次項(xiàng)系數(shù)一半的平方.【詳解】∵x2?2x?m=0,∴x2?2x=m,∴x2?2x+1=m+1,∴(x?1)2=m+1.故選D.【考點(diǎn)】此題考查了配方法解一元二次方程,解題時(shí)要注意解題步驟的準(zhǔn)確使用.二、多選題1、BCD【解析】【分析】根據(jù)相似三角形的判定方法一一判斷即可.【詳解】A.有一個(gè)角是40°的兩個(gè)等腰三角形,當(dāng)40°的角為等腰三角形的底角,當(dāng)40°的角為等腰三角形頂角,兩個(gè)三角形內(nèi)角分別為40°、40°、100°和40°、70°、70°,則兩三角形不相似,故選項(xiàng)A不合題意B.等腰直角三角形的內(nèi)角均為45°,45°,90°,根據(jù)三角形相似判定方法等腰直角三角形有兩組角對(duì)應(yīng)相等,兩個(gè)三角形相似,一定相似,故選項(xiàng)B符合題意;C.∵100°>90°,∴100°的角只能是等腰三角形的頂角,另兩個(gè)角分別為40°,40°,根據(jù)三角形相似判定定理,有兩組角對(duì)應(yīng)相等的三角形相似,故選項(xiàng)C符合題意;D.∵等邊三角形的內(nèi)角都是60°,根據(jù)三角形相似判定定理,兩個(gè)等邊三角形有兩個(gè)角對(duì)應(yīng)相等,兩個(gè)三角形相似,故選項(xiàng)D符合題意.故選:BCD.【考點(diǎn)】考查相似三角形的判定方法,掌握相似三角形判定的4種方法是解題的關(guān)鍵.2、ABC【解析】【分析】由∠DBP+∠BPO=90°,∠APE+∠BPO=90°,可判斷結(jié)論A正確;過P作PK⊥AD于K,PT⊥AB于T,證明△PKE≌△PTB(ASA),可判定結(jié)論B正確;延長KP交BC于M,可得△CPM是等腰直角三角形,CP=PM=CP=1,即可得AE=AD-DK-KE=4,判斷結(jié)論C正確;在Rt△BPM中,BP=,可得S△PBE=BP?PE=13,可判斷結(jié)論D錯(cuò)誤.【詳解】解:∵四邊形ABCD是正方形,∴∠BOP=90°,∴∠DBP+∠BPO=90°,∵PE⊥PB,∴∠APE+∠BPO=90°,∴∠APE=∠DBP,故結(jié)論A正確;過P作PK⊥AD于K,PT⊥AB于T,如圖:∵四邊形ABCD是正方形,∴∠DAC=∠BAC,又PK⊥AD,PT⊥AB∴PK=PT,∵∠KPT=90°=∠EPB,∴∠KPE=∠BPT,∵∠PKE=90°=∠PTB,∴△PKE≌△PTB(ASA),∴PE=PB,故結(jié)論B正確;延長KP交BC于M,如圖:∵四邊形ABCD是正方形,∴AD∥BC,∠ACB=45°,∴PM⊥BC,∴△CPM是等腰直角三角形,∴CP=PM=CP=1,∴DK=CM=1,KE=PM=1,∴AE=AD-DK-KE=4,故結(jié)論C正確;∵BC=6,CM=1,∴BM=5,在Rt△BPM中,BP==,∴PE=BP=,∴S△PBE=BP?PE=13,故結(jié)論D錯(cuò)誤,故選:ABC.【考點(diǎn)】本題考查正方形的性質(zhì)及應(yīng)用,涉及全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì)及應(yīng)用等知識(shí),解題的關(guān)鍵是作輔助線,證明△PKE≌△PTB.3、BCD【解析】【分析】根據(jù)相似多邊形的判定定理對(duì)各個(gè)選項(xiàng)進(jìn)行分析,從而確定最后答案.【詳解】解:矩形不相似,因?yàn)槠鋵?duì)應(yīng)角的度數(shù)一定相同,但對(duì)應(yīng)邊的比值不一定相等,不符合相似的條件,故A不符合題意;銳角三角形、正五邊形、直角三角形的原圖與外框相似,因?yàn)槠鋵?duì)應(yīng)角均相等,對(duì)應(yīng)邊均對(duì)應(yīng)成比例,符合相似的條件,故B、C、D符合題意.故選BCD.【考點(diǎn)】此題主要考查了相似圖形判定,注意邊數(shù)相同、各角對(duì)應(yīng)相等、各邊對(duì)應(yīng)成比例的兩個(gè)多邊形是相似多邊形.4、ABD【解析】【分析】根據(jù)三角形相似的判斷方法判斷即可.【詳解】解:A、∵∠AED=∠ABC,∠A=∠A,∴△AED∽△ABC,符合題意;B、∵∠ADE=∠AC,∠A=∠A,∴△AED∽△ABC,符合題意;C、,不能判定△AED∽△ABC,不符合題意;D、∵,∠A=∠A,∴△AED∽△ABC,符合題意.故選:ABD.【考點(diǎn)】此題考查了三角形相似的判斷方法,解題的關(guān)鍵是熟練掌握三角形相似的判定方法.5、CD【解析】【分析】根據(jù)相似三角形的判定定理對(duì)各選項(xiàng)進(jìn)行逐一判定即可.【詳解】解:A、陰影部分的三角形與原三角形有兩個(gè)角相等,故兩三角形相似,故本選項(xiàng)錯(cuò)誤;B、陰影部分的三角形與原三角形有兩個(gè)角相等,故兩三角形相似,故本選項(xiàng)錯(cuò)誤;C、兩三角形的對(duì)應(yīng)邊不成比例,故兩三角形不相似,故本選項(xiàng)正確.D、,兩三角形對(duì)應(yīng)邊不成比例,故兩三角形不相似,故本選項(xiàng)正確;故選:.【考點(diǎn)】本題考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此題的關(guān)鍵.6、ABC【解析】【分析】由切線的性質(zhì)得∠CBO=90°,首先連接OD,易證得△COD≌△COB(SAS),然后由全等三角形的對(duì)應(yīng)角相等,求得∠CDO=90°,即可證得直線CD是⊙O的切線;根據(jù)全等三角形的性質(zhì)得到CD=CB,根據(jù)線段垂直平分線的判定定理得到即CO⊥DB;根據(jù)余角的性質(zhì)得到∠ADE=∠BDO,等量代換得到∠EDA=∠DBE,根據(jù)相似三角形的判定定理得到△EDA∽△EBD;根據(jù)相似三角形的性質(zhì)得到,于是得到ED?BC=BO?BE.【詳解】解:A.證明:連接DO.∵AB為⊙O的直徑,BC為⊙O的切線,∴∠CBO=90°,∵ADOC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中,,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵點(diǎn)D在⊙O上,∴CD是⊙O的切線;故選項(xiàng)正確,符合題意;B.證明:∵△COD≌△COB,∴CD=CB,∵OD=OB,∴CO垂直平分DB,即CO⊥DB,故選項(xiàng)正確,符合題意;C.證明:∵AB為⊙O的直徑,DC為⊙O的切線,∴∠EDO=∠ADB=90°,∴∠EDA+∠ADO=∠BDO+∠ADO=90°,∴∠ADE=∠BDO,∵OD=OB,∴∠ODB=∠OBD,∴∠EDA=∠DBE,∵∠E=∠E,∴△EDA∽△EBD,故選項(xiàng)正確,符合題意;D.證明:∵∠EDO=∠EBC=90°,∠E=∠E,∴△EOD∽△ECB,∴,∵OD=OB,∴ED?BC=BO?BE,故選項(xiàng)錯(cuò)誤,不符合題意.故選:ABC.【考點(diǎn)】本題主要考查了切線的判定、全等三角形的判定與性質(zhì)以及相似三角形的判定與性質(zhì),注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用是解答此題的關(guān)鍵.三、填空題1、3【解析】【分析】先根據(jù)一元二次方程的解的定義得到m2+3m-1=0,則3m-1=-m2,根據(jù)根與系數(shù)的關(guān)系得出m+n=-3,再將其代入整理后的代數(shù)式計(jì)算即可.【詳解】解:∵m是一元二次方程x2+3x-1=0的根,∴m2+3m-1=0,∴3m-1=-m2,∵m、n是一元二次方程x2+3x-1=0的兩個(gè)根,∴m+n=-3,∴,故答案為:3.【考點(diǎn)】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程()的兩根時(shí),,.也考查了一元二次方程的解.2、2﹣.【解析】【分析】連接OB,過點(diǎn)B作BE⊥x軸于點(diǎn)E,根據(jù)正方形的性質(zhì)可得出∠AOB的度數(shù)及OB的長,結(jié)合三角形外角的性質(zhì)可得出∠BDO=∠DBO,利用等角對(duì)等邊可得出OD=OB,進(jìn)而可得出點(diǎn)D的坐標(biāo),在Rt△BOE中,通過解直角三角形可得出點(diǎn)B的坐標(biāo),由點(diǎn)B,D的坐標(biāo),利用待定系數(shù)法可求出k,b的值,再將其代入(b﹣k)中即可求出結(jié)論.【詳解】解:連接OB,過點(diǎn)B作BE⊥x軸于點(diǎn)E,如圖所示.∵正方形ABCO的邊長為,∴∠AOB=45°,OB=OA=2.∵OA與x軸正半軸的夾角為15°,∴∠BOE=45°﹣15°=30°.又∵∠BDO=15°,∴∠DBO=∠BOE﹣∠BDO=15°,∴∠BDO=∠DBO,∴OD=OB=2,∴點(diǎn)D的坐標(biāo)為(﹣2,0).在Rt△BOE中,OB=2,∠BOE=30°,∴BE=OB=1,OE==,∴點(diǎn)B的坐標(biāo)為(,1).將B(,1),D(﹣2,0)代入y=kx+b,得:,解得:,∴b﹣k=4﹣2﹣(2﹣)=2﹣.故答案為:2﹣.【考點(diǎn)】此題考查的是正方形的性質(zhì)、等腰三角形的判定、直角三角形的性質(zhì)和求一次函數(shù)的解析式,掌握正方形的性質(zhì)、等角對(duì)等邊、30°所對(duì)的直角邊是斜邊的一半、勾股定理和利用待定系數(shù)法求一次函數(shù)解析式是解決此題的關(guān)鍵.3、或##或【解析】【分析】連接,根據(jù)題意可得,當(dāng)∠ADQ=90°時(shí),分點(diǎn)在線段上和的延長線上,且,勾股定理求得即可.【詳解】如圖,連接,在Rt△ABC中,∠ACB=90°,,,,,根據(jù)題意可得,當(dāng)∠ADQ=90°時(shí),點(diǎn)在上,且,,如圖,在中,,在中,故答案為:或.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),勾股定理,直角三角形斜邊上中線的性質(zhì),確定點(diǎn)的位置是解題的關(guān)鍵.4、①③④【解析】【分析】利用根與系數(shù)的關(guān)系判斷①;由Δ=b2-4ac判斷②;由判別式可判斷③;將x=m代入方程得am2=-(bm+c),再代入=(2am+b)2變形可判斷④.【詳解】解:若方程兩根為-1和2,則=-1×2=-2,即c=-2a,2a+c=2a-2a=0,故①正確;由b>a+c不能判斷Δ=b2-4ac值的大小情況,故②錯(cuò)誤;若b=2a+3c,則Δ=b2-4ac=4(a+c)2+5c2>0,一元二次方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根,故③正確.若m是方程ax2+bx+c=0的一個(gè)根,所以有am2+bm+c=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[-(bm+c)]+4abm+b2=4abm-4abm-4ac+b2=b2-4ac.故④正確;故答案為:①③④.【考點(diǎn)】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系及根的判別式Δ=b2-4ac:當(dāng)Δ>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)Δ=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)Δ<0,方程沒有實(shí)數(shù)根.5、12【解析】【分析】設(shè)這根旗桿的高度為xm,利用某一時(shí)刻物體的高度與它的影長的比相等得到,然后利用比例性質(zhì)求x即可.【詳解】設(shè)這根旗桿的高度為xm,根據(jù)題意得解得x=12(m),即這根旗桿的高度為12m.故答案為12.【考點(diǎn)】本題考查了相似三角形的應(yīng)用:利用影長測(cè)量物體的高度;利用相似測(cè)量河的寬度(測(cè)量距離);借助標(biāo)桿或直尺測(cè)量物體的高度.6、1【解析】【分析】由比例的性質(zhì),設(shè),則,,,然后代入計(jì)算,即可得到答案.【詳解】解:根據(jù)題意,設(shè),∴,,,∴,故答案為:1.【考點(diǎn)】本題考查了比例的性質(zhì),解題的關(guān)鍵是掌握比例的性質(zhì)進(jìn)行解題.7、5【解析】【分析】先證明△ACD∽△BCA,再根據(jù)相似三角形的性質(zhì)得到:△ACD的面積:△ABC的面積為1:4,再結(jié)合△ABD的面積為15,然后求出△ACD的面積即可.【詳解】∵,,∴,∵,,∴,∴的面積,故答案是:5.【考點(diǎn)】本題主要考查了相似三角形的判定和性質(zhì)、掌握相似三角形的面積比等于相似比的平方是解答本題的關(guān)鍵.8、0【解析】【分析】根據(jù)正比例函數(shù)和反比例函數(shù)的圖像關(guān)于原點(diǎn)對(duì)稱,則交點(diǎn)也關(guān)于原點(diǎn)對(duì)稱,即可求得【詳解】一次函數(shù)與反比例函數(shù)的圖象交于,兩點(diǎn),一次函數(shù)與反比例函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,故答案為:0【考點(diǎn)】本題考查了正比例函數(shù)和反比例函數(shù)圖像的性質(zhì),掌握以上性質(zhì)是解題的關(guān)鍵.四、解答題1、(1)①;②;(2)當(dāng)0°≤θ<360°時(shí),的大小沒有變化;證明見解析;(3)4+2.【解析】【分析】(1)①利用等腰三角形的性質(zhì)判斷出∠A=∠B,∠A=∠AED,進(jìn)而得出∠B=∠DEA,得出DE∥BC,即可得出結(jié)論;②同①的方法,即可得出結(jié)論;(2)利用兩邊成比例,夾角相等,判斷出△ADC∽△AEB,即可得出結(jié)論;(3)判斷出點(diǎn)E在BA的延長線上時(shí),BE最大,再求出AE,即可得出結(jié)論.【詳解】(1)①在Rt△ABC中,AC=BC,∴AB=AC,∵AC=BC,∴∠A=∠B,∵AD=DE,∴∠DEA=∠A,∴∠DEA=∠B,∴DE∥BC,∴,∴,故答案為:;②如圖,當(dāng)θ=180°時(shí),∵AC=BC,∴∠BAC=∠B,∵∠BAC=∠DAE,∴∠DAE=∠B,∵AD=DE,∴∠DEA=∠DAE,∴∠DEA=∠B,∴DE∥BC,∴,∴,∴,故答案為:;(2)當(dāng)0°≤θ<360°時(shí),的大小沒有變化;證明:在Rt△ABC中,∵∠ACB=90°,AC=BC,∴,∠CAB=45°,同理,∠DAE=45°,∴,∵∠CAB=∠DAE,∴∠CAD=∠BAE,∴△ADC∽△AEB,∴;(3)如答圖,當(dāng)點(diǎn)E在BA的延長線上時(shí),BE最大,其最大值為AB+AE,在Rt△ABC中,AC=BC=2,∴AB=AC=×2=4,∴AD=DE=AB=2,由(1)知,DE∥BC,∴∠ADE=∠C=90°,∴AE=AD=2,∴BE最大=AB+AE=4+2,故答案為:4+2.【考點(diǎn)】此題是幾何變換綜合題,主要考查了等腰三角形的性質(zhì),平行線的性質(zhì),相似三角形的判定和性質(zhì),判斷出兩三角形相似是解本題的關(guān)鍵.2、(1);(2);(3)m的值為-3或-1或2或7;【解析】【分析】(1)根據(jù)一元二次方程的解求出OB和OC的長度,然后得到點(diǎn)B,點(diǎn)C坐標(biāo)和OA的長度,進(jìn)而得到點(diǎn)A坐標(biāo),最后使用待定系數(shù)法即可求出直線AC的解析式;(2)根據(jù)點(diǎn)A,點(diǎn)B坐標(biāo)使用待定系數(shù)法求出直線AB的解析式,根據(jù)直線AB解析式和直線AC解析式求出點(diǎn)P,Q,D坐標(biāo),進(jìn)而求出PQ和CD的長度,然后根據(jù)三角形面積公式求出S,最后對(duì)a的值進(jìn)行分類討論即可;(3)根據(jù)△MAB的直角頂點(diǎn)進(jìn)行分類討論,然后根據(jù)勾股定理求解即可.(1)解:解方程得,,∵線段OB,OC()的長是關(guān)于x的方程的兩個(gè)根,∴OB=1,OC=6,∴,,∵CO=2AO,∴OA=3,∴,設(shè)直線AC的解析式為,把點(diǎn),代入得,解得,∴直線AC的解析式為;(2)解:設(shè)直線AB的解析式為y=px+q,把,代入直線AB解析式得,解得,∴直線AB的解析式為,∵PD⊥x軸,垂足為D,PD與直線AB交于點(diǎn)Q,點(diǎn)P的橫坐標(biāo)為a,∴,,,∴,,∴,當(dāng)點(diǎn)P與點(diǎn)A或點(diǎn)C重合時(shí),即當(dāng)a=0或時(shí),此時(shí)S=0,不符合題意,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,∴;(3)解:∵,,,∴,,,當(dāng)∠MAB=90°時(shí),,∴,解得,當(dāng)∠ABM=90°時(shí),,∴,解得m=7,當(dāng)∠AMB=90°時(shí),,∴,解得,,∴m的值為-3或-1或2或7.【考點(diǎn)】本題考查解一元二次方程、待定系數(shù)法求一次函數(shù)解析式、三角形面積公式、勾股定理,正確應(yīng)用分類討論思想是解題關(guān)鍵.3、(1)x1=,x2=(2)x1=4+,x2=4-【解析】【分析】(1)根據(jù)公式法,可得方程的解;(2)根據(jù)配方法,可得方程的解.(1)解:∵a=2,b=-5,c=1,∴Δ=b2﹣4ac=(-5)2-4×2×1=17,∴x=,∴x1=,x2=.(2)解:移項(xiàng)得,并配方,得,即(x-4)2=15,兩邊開平方,得x=4±,∴x1=4+,x2=4-.【考點(diǎn)】本題考查了解一元二次方程,配方法解一元二次方程的關(guān)鍵是配方,利用公式法解方程要利用根的判別式.4、(1)見解析;(2);見解析;(3)【解析】【分析】(1)先△ABE≌△DAQ,可得AE=DQ;再證明四邊形DQFG是平行四邊形即可解決問題;(2)如圖2中,作GM⊥AB于M.然后證明△ABE∽△GMF即可解決問題;(3)如圖3中,作PM⊥BC交BC的延長線于M.利用相似三角形的性質(zhì)求出PM,CM即可解決問題.【詳解】(1)如圖(1),∵四邊形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DQ,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.∵四邊形ABCD是正方形,AE⊥DQ,AE⊥GF,∴DG∥QF,DQ∥GF,∴四邊形DQFG是平行四邊形,∴DQ=GF,∴FG=AE;(2).理由:如圖(2)中,作GM⊥AB于M.∵AE⊥GF,∴∠AOF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年?duì)I養(yǎng)周飲食健康知識(shí)競賽題庫及答案(共180題)
- 2025年八大特殊作業(yè)安全判斷題試題庫及答案(共50題)
- 2025年湖北聯(lián)考全套試題及答案
- 育嬰師理論考試題及答案
- 水電施工合同范本2015
- 鑄銅銅像合同范本
- 2025年就業(yè)指導(dǎo)考試題目及答案
- 山西省太原市2024-2025學(xué)年高二上學(xué)期11月期中考試物理試題含答案物理答案
- 收購水稻協(xié)議合同范本
- 網(wǎng)絡(luò)欠條合同范本
- 求職OMG-大學(xué)生就業(yè)指導(dǎo)與技能開發(fā)智慧樹知到期末考試答案章節(jié)答案2024年中國海洋大學(xué)
- JBT 7387-2014 工業(yè)過程控制系統(tǒng)用電動(dòng)控制閥
- A課堂懲罰游戲
- 小品劇本《鍘美案》臺(tái)詞完整版遼寧民間藝術(shù)團(tuán)宋小寶
- 電子合同取證流程規(guī)范
- 張家界航空工業(yè)職業(yè)技術(shù)學(xué)院單招職業(yè)技能測(cè)試參考試題庫(含答案)
- 醫(yī)藥代表如何成功拜訪客戶
- 科研倫理與學(xué)術(shù)規(guī)范-課后作業(yè)答案
- 交通銀行跨境人民幣業(yè)務(wù)介紹
- GB/T 33636-2023氣動(dòng)用于塑料管的插入式管接頭
- JJF(石化)036-2020漆膜附著力測(cè)定儀(劃圈法)校準(zhǔn)規(guī)范
評(píng)論
0/150
提交評(píng)論