版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2020-2021中考數(shù)學(xué)——平行四邊形的綜合壓軸題專題復(fù)習(xí)及詳細(xì)答案一、平行四邊形1.如果兩個三角形的兩條邊對應(yīng)相等,夾角互補(bǔ),那么這兩個三角形叫做互補(bǔ)三角形,如圖2,分別以△ABC的邊AB、AC為邊向外作正方形ABDE和ACGF,則圖中的兩個三角形就是互補(bǔ)三角形.(1)用尺規(guī)將圖1中的△ABC分割成兩個互補(bǔ)三角形;(2)證明圖2中的△ABC分割成兩個互補(bǔ)三角形;(3)如圖3,在圖2的基礎(chǔ)上再以BC為邊向外作正方形BCHI.①已知三個正方形面積分別是17、13、10,在如圖4的網(wǎng)格中(網(wǎng)格中每個小正方形的邊長為1)畫出邊長為、、的三角形,并計算圖3中六邊形DEFGHI的面積.②若△ABC的面積為2,求以EF、DI、HG的長為邊的三角形面積.【答案】(1)作圖見解析(2)證明見解析(3)①62;②6【解析】試題分析:(1)作BC邊上的中線AD即可.(2)根據(jù)互補(bǔ)三角形的定義證明即可.(3)①畫出圖形后,利用割補(bǔ)法求面積即可.②平移△CHG到AMF,連接EM,IM,則AM=CH=BI,只要證明S△EFM=3S△ABC即可.試題解析:(1)如圖1中,作BC邊上的中線AD,△ABD和△ADC是互補(bǔ)三角形.(2)如圖2中,延長FA到點(diǎn)H,使得AH=AF,連接EH.∵四邊形ABDE,四邊形ACGF是正方形,∴AB=AE,AF=AC,∠BAE=∠CAF=90°,∴∠EAF+∠BAC=180°,∴△AEF和△ABC是兩個互補(bǔ)三角形.∵∠EAH+∠HAB=∠BAC+∠HAB=90°,∴∠EAH=∠BAC,∵AF=AC,∴AH=AB,在△AEH和△ABC中,∴△AEH≌△ABC,∴S△AEF=S△AEH=S△ABC.(3)①邊長為、、的三角形如圖4所示.∵S△ABC=3×4﹣2﹣1.5﹣3=5.5,∴S六邊形=17+13+10+4×5.5=62.②如圖3中,平移△CHG到AMF,連接EM,IM,則AM=CH=BI,設(shè)∠ABC=x,∵AM∥CH,CH⊥BC,∴AM⊥BC,∴∠EAM=90°+90°﹣x=180°﹣x,∵∠DBI=360°﹣90°﹣90°﹣x=180°﹣x,∴∠EAM=∠DBI,∵AE=BD,∴△AEM≌△DBI,∵在△DBI和△ABC中,DB=AB,BI=BC,∠DBI+∠ABC=180°,∴△DBI和△ABC是互補(bǔ)三角形,∴S△AEM=S△AEF=S△AFM=2,∴S△EFM=3S△ABC=6.考點(diǎn):1、作圖﹣應(yīng)用與設(shè)計,2、三角形面積2.如圖,四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求證:四邊形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度數(shù).【答案】(1)見解析;(2)18°.【解析】【分析】(1)根據(jù)平行四邊形的判定得出四邊形ABCD是平行四邊形,求出∠ABC=90°,根據(jù)矩形的判定得出即可;(2)求出∠FDC的度數(shù),根據(jù)三角形內(nèi)角和定理求出∠DCO,根據(jù)矩形的性質(zhì)得出OD=OC,求出∠CDO,即可求出答案.【詳解】(1)證明:∵AO=CO,BO=DO∴四邊形ABCD是平行四邊形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四邊形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四邊形ABCD是矩形,∴OC=OD,∴∠ODC=54°∴∠BDF=∠ODC﹣∠FDC=18°.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)和判定,矩形的性質(zhì)和判定的應(yīng)用,能靈活運(yùn)用定理進(jìn)行推理是解此題的關(guān)鍵,注意:矩形的對角線相等,有一個角是直角的平行四邊形是矩形.3.已知:如圖,在平行四邊形ABCD中,O為對角線BD的中點(diǎn),過點(diǎn)O的直線EF分別交AD,BC于E,F(xiàn)兩點(diǎn),連結(jié)BE,DF.(1)求證:△DOE≌△BOF.(2)當(dāng)∠DOE等于多少度時,四邊形BFDE為菱形?請說明理由.【答案】(1)證明見解析;(2)當(dāng)∠DOE=90°時,四邊形BFED為菱形,理由見解析.【解析】試題分析:(1)利用平行四邊形的性質(zhì)以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一組對邊平行且相等的四邊形是平行四邊形得出四邊形EBFD是平行四邊形,進(jìn)而利用垂直平分線的性質(zhì)得出BE=ED,即可得出答案.試題解析:(1)∵在?ABCD中,O為對角線BD的中點(diǎn),∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)當(dāng)∠DOE=90°時,四邊形BFDE為菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四邊形EBFD是平行四邊形,∵∠EOD=90°,∴EF⊥BD,∴四邊形BFDE為菱形.考點(diǎn):平行四邊形的性質(zhì);全等三角形的判定與性質(zhì);菱形的判定.4.如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動,同時點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)D、E運(yùn)動的時間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.(1)求證:AE=DF;(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;(3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.【答案】(1)見解析;(2)能,t=10;(3)t=或12.【解析】【分析】(1)利用t表示出CD以及AE的長,然后在直角△CDF中,利用直角三角形的性質(zhì)求得DF的長,即可證明;(2)易證四邊形AEFD是平行四邊形,當(dāng)AD=AE時,四邊形AEFD是菱形,據(jù)此即可列方程求得t的值;(3)△DEF為直角三角形,分∠EDF=90°和∠DEF=90°兩種情況討論.【詳解】解:(1)證明:∵在Rt△ABC中,∠C=90°﹣∠A=30°,∴AB=AC=×60=30cm,∵CD=4t,AE=2t,又∵在Rt△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;(2)能,∵DF∥AB,DF=AE,∴四邊形AEFD是平行四邊形,當(dāng)AD=AE時,四邊形AEFD是菱形,即60﹣4t=2t,解得:t=10,∴當(dāng)t=10時,AEFD是菱形;(3)若△DEF為直角三角形,有兩種情況:①如圖1,∠EDF=90°,DE∥BC,則AD=2AE,即60﹣4t=2×2t,解得:t=,②如圖2,∠DEF=90°,DE⊥AC,則AE=2AD,即,解得:t=12,綜上所述,當(dāng)t=或12時,△DEF為直角三角形.5.如圖,在△ABC中,∠ACB=90°,∠CAB=30°,以線段AB為邊向外作等邊△ABD,點(diǎn)E是線段AB的中點(diǎn),連接CE并延長交線段AD于點(diǎn)F.(1)求證:四邊形BCFD為平行四邊形;(2)若AB=6,求平行四邊形ADBC的面積.【答案】(1)見解析;(2)S平行四邊形ADBC=.【解析】【分析】(1)在Rt△ABC中,E為AB的中點(diǎn),則CE=AB,BE=AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因為∠BAD=∠ABC=60°,所以AD∥BC,即FD//BC,則四邊形BCFD是平行四邊形.(2)在Rt△ABC中,求出BC,AC即可解決問題;【詳解】解:(1)證明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等邊△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E為AB的中點(diǎn),∴AE=BE,又∵∠AEF=∠BEC,∴△AEF≌△BEC,在△ABC中,∠ACB=90°,E為AB的中點(diǎn),∴CE=AB,BE=AB,∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC∥BD,又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC,∴四邊形BCFD是平行四邊形;(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=,∴S平行四邊形BCFD=3×=,S△ACF=×3×=,S平行四邊形ADBC=.【點(diǎn)睛】本題考查平行四邊形的判定和性質(zhì)、直角三角形斜邊中線定理、等邊三角形的性質(zhì)、解直角三角形、勾股定理等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考??碱}型.6.如圖,正方形ABCD的邊長為8,E為BC上一定點(diǎn),BE=6,F(xiàn)為AB上一動點(diǎn),把△BEF沿EF折疊,點(diǎn)B落在點(diǎn)B′處,當(dāng)△AFB′恰好為直角三角形時,B′D的長為?【答案】或【解析】【分析】分兩種情況分析:如圖1,當(dāng)∠AB′F=90°時,此時A、B′、E三點(diǎn)共線,過點(diǎn)B′作B′M⊥AB,B′N⊥AD,由三角形的面積法則可求得B′M=2.4,再由勾股定理可求得B′N=3.2,在Rt△CB′N中,由勾股定理得,B′D=;如圖2,當(dāng)∠AFB′=90°時,由題意可知此時四邊形EBFB′是正方形,AF=2,過點(diǎn)B′作B′N⊥AD,則四邊形AFB′N為矩形,在Rt△CB′N中,由勾股定理得,B′D=;【詳解】如圖1,當(dāng)∠AB′F=90°時,此時A、B′、E三點(diǎn)共線,∵∠B=90°,∴AE==10,∵B′E=BE=6,∴AB′=4,∵B′F=BF,AF+BF=AB=8,在Rt△AB′F中,∠AB′F=90°,由勾股定理得,AF2=FB′2+AB′2,∴AF=5,BF=3,過點(diǎn)B′作B′M⊥AB,B′N⊥AD,由三角形的面積法則可求得B′M=2.4,再由勾股定理可求得B′N=3.2,∴AN=B′M=2.4,∴DN=AD-AN=8-2.4=5.6,在Rt△CB′N中,由勾股定理得,B′D==;如圖2,當(dāng)∠AFB′=90°時,由題意可知此時四邊形EBFB′是正方形,∴AF=2,過點(diǎn)B′作B′N⊥AD,則四邊形AFB′N為矩形,∴AN=B′F=6,B′N=AF=2,∴DN=AD-AN=2,在Rt△CB′N中,由勾股定理得,B′D==;綜上,可得B′D的長為或.【點(diǎn)睛】本題主要考查正方形的性質(zhì)與判定,矩形有性質(zhì)判定、勾股定理、折疊的性質(zhì)等,能正確地畫出圖形并能分類討論是解題的關(guān)鍵.7.如圖①,四邊形是知形,,點(diǎn)是線段上一動點(diǎn)(不與重合),點(diǎn)是線段延長線上一動點(diǎn),連接交于點(diǎn).設(shè),已知與之間的函數(shù)關(guān)系如圖②所示.(1)求圖②中與的函數(shù)表達(dá)式;(2)求證:;(3)是否存在的值,使得是等腰三角形?如果存在,求出的值;如果不存在,說明理由【答案】(1)y=﹣2x+4(0<x<2);(2)見解析;(3)存在,x=或或.【解析】【分析】(1)利用待定系數(shù)法可得y與x的函數(shù)表達(dá)式;(2)證明△CDE∽△ADF,得∠ADF=∠CDE,可得結(jié)論;(3)分三種情況:①若DE=DG,則∠DGE=∠DEG,②若DE=EG,如圖①,作EH∥CD,交AD于H,③若DG=EG,則∠GDE=∠GED,分別列方程計算可得結(jié)論.【詳解】(1)設(shè)y=kx+b,由圖象得:當(dāng)x=1時,y=2,當(dāng)x=0時,y=4,代入得:,得,∴y=﹣2x+4(0<x<2);(2)∵BE=x,BC=2∴CE=2﹣x,∴,∴,∵四邊形ABCD是矩形,∴∠C=∠DAF=90°,∴△CDE∽△ADF,∴∠ADF=∠CDE,∴∠ADF+∠EDG=∠CDE+∠EDG=90°,∴DE⊥DF;(3)假設(shè)存在x的值,使得△DEG是等腰三角形,①若DE=DG,則∠DGE=∠DEG,∵四邊形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠DGE=∠GEB,∴∠DEG=∠BEG,在△DEF和△BEF中,,∴△DEF≌△BEF(AAS),∴DE=BE=x,CE=2﹣x,∴在Rt△CDE中,由勾股定理得:1+(2﹣x)2=x2,x=;②若DE=EG,如圖①,作EH∥CD,交AD于H,∵AD∥BC,EH∥CD,∴四邊形CDHE是平行四邊形,∴∠C=90°,∴四邊形CDHE是矩形,∴EH=CD=1,DH=CE=2﹣x,EH⊥DG,∴HG=DH=2﹣x,∴AG=2x﹣2,∵EH∥CD,DC∥AB,∴EH∥AF,∴△EHG∽△FAG,∴,∴,∴(舍),③若DG=EG,則∠GDE=∠GED,∵AD∥BC,∴∠GDE=∠DEC,∴∠GED=∠DEC,∵∠C=∠EDF=90°,∴△CDE∽△DFE,∴,∵△CDE∽△ADF,∴,∴,∴2﹣x=,x=,綜上,x=或或.【點(diǎn)睛】本題是四邊形的綜合題,主要考查了待定系數(shù)法求一次函數(shù)的解析式,三角形相似和全等的性質(zhì)和判定,矩形和平行四邊形的性質(zhì)和判定,勾股定理和逆定理等知識,運(yùn)用相似三角形的性質(zhì)是解決本題的關(guān)鍵.8.如圖1,在△ABC中,AB=AC,AD⊥BC于D,分別延長AC至E,BC至F,且CE=EF,延長FE交AD的延長線于G.(1)求證:AE=EG;(2)如圖2,分別連接BG,BE,若BG=BF,求證:BE=EG;(3)如圖3,取GF的中點(diǎn)M,若AB=5,求EM的長.【答案】(1)證明見解析(2)證明見解析(3)【解析】【分析】(1)根據(jù)平行線的性質(zhì)和等腰三角形的三線合一的性質(zhì)得:∠CAD=∠G,可得AE=EG;(2)作輔助線,證明△BEF≌△GEC(SAS),可得結(jié)論;(3)如圖3,作輔助線,構(gòu)建平行線,證明四邊形DMEN是平行四邊形,得EM=DN=AC,計算可得結(jié)論.【詳解】證明:(1)如圖1,過E作EH⊥CF于H,∵AD⊥BC,∴EH∥AD,∴∠CEH=∠CAD,∠HEF=∠G,∵CE=EF,∴∠CEH=∠HEF,∴∠CAD=∠G,∴AE=EG;(2)如圖2,連接GC,∵AC=BC,AD⊥BC,∴BD=CD,∴AG是BC的垂直平分線,∴GC=GB,∴∠GBF=∠BCG,∵BG=BF,∴GC=BE,∵CE=EF,∴∠CEF=180°﹣2∠F,∵BG=BF,∴∠GBF=180°﹣2∠F,∴∠GBF=∠CEF,∴∠CEF=∠BCG,∵∠BCE=∠CEF+∠F,∠BCE=∠BCG+∠GCE,∴∠GCE=∠F,在△BEF和△GCE中,,∴△BEF≌△GEC(SAS),∴BE=EG;(3)如圖3,連接DM,取AC的中點(diǎn)N,連接DN,由(1)得AE=EG,∴∠GAE=∠AGE,在Rt△ACD中,N為AC的中點(diǎn),∴DN=AC=AN,∠DAN=∠ADN,∴∠ADN=∠AGE,∴DN∥GF,在Rt△GDF中,M是FG的中點(diǎn),∴DM=FG=GM,∠GDM=∠AGE,∴∠GDM=∠DAN,∴DM∥AE,∴四邊形DMEN是平行四邊形,∴EM=DN=AC,∵AC=AB=5,∴EM=.【點(diǎn)睛】本題是三角形的綜合題,主要考查了全等三角形的判定與性質(zhì),直角三角形斜邊中線的性質(zhì),等腰三角形的性質(zhì)和判定,平行四邊形的性質(zhì)和判定等知識,解題的關(guān)鍵是作輔助線,并熟練掌握全等三角形的判定方法,特別是第三問,輔助線的作法是關(guān)鍵.9.如圖,在正方形ABCD中,對角線AC與BD交于點(diǎn)O,在Rt△PFE中,∠EPF=90°,點(diǎn)E、F分別在邊AD、AB上.(1)如圖1,若點(diǎn)P與點(diǎn)O重合:①求證:AF=DE;②若正方形的邊長為2,當(dāng)∠DOE=15°時,求線段EF的長;(2)如圖2,若Rt△PFE的頂點(diǎn)P在線段OB上移動(不與點(diǎn)O、B重合),當(dāng)BD=3BP時,證明:PE=2PF.【答案】(1)①證明見解析,②;(2)證明見解析.【解析】【分析】(1)①根據(jù)正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)即可證得:△AOF≌△DOE根據(jù)全等三角形的性質(zhì)證明;②作OG⊥AB于G,根據(jù)余弦的概念求出OF的長,根據(jù)勾股定理求值即可;(2)首先過點(diǎn)P作HP⊥BD交AB于點(diǎn)H,根據(jù)相似三角形的判定和性質(zhì)求出PE與PF的數(shù)量關(guān)系.【詳解】(1)①證明:∵四邊形ABCD是正方形,∴OA=OD,∠OAF=∠ODE=45°,∠AOD=90°,∴∠AOE+∠DOE=90°,∵∠EPF=90°,∴∠AOF+∠AOE=90°,∴∠DOE=∠AOF,在△AOF和△DOE中,,∴△AOF≌△DOE,∴AF=DE;②解:過點(diǎn)O作OG⊥AB于G,∵正方形的邊長為2,∴OG=BC=,∵∠DOE=15°,△AOF≌△DOE,∴∠AOF=15°,∴∠FOG=45°-15°=30°,∴OF==2,∴EF=;(2)證明:如圖2,過點(diǎn)P作HP⊥BD交AB于點(diǎn)H,則△HPB為等腰直角三角形,∠HPD=90°,∴HP=BP,∵BD=3BP,∴PD=2BP,∴PD=2HP,又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°,∴∠HPF=∠DPE,又∵∠BHP=∠EDP=45°,∴△PHF∽△PDE,∴,∴PE=2PF.【點(diǎn)睛】此題屬于四邊形的綜合題.考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)以及勾股定理.注意準(zhǔn)確作出輔助線是解此題的關(guān)鍵.10.問題探究(1)如圖①,已知正方形ABCD的邊長為4.點(diǎn)M和N分別是邊BC、CD上兩點(diǎn),且BM=CN,連接AM和BN,交于點(diǎn)P.猜想AM與BN的位置關(guān)系,并證明你的結(jié)論.(2)如圖②,已知正方形ABCD的邊長為4.點(diǎn)M和N分別從點(diǎn)B、C同時出發(fā),以相同的速度沿BC、CD方向向終點(diǎn)C和D運(yùn)動.連接AM和BN,交于點(diǎn)P,求△APB周長的最大值;問題解決(3)如圖③,AC為邊長為2的菱形ABCD的對角線,∠ABC=60°.點(diǎn)M和N分別從點(diǎn)B、C同時出發(fā),以相同的速度沿BC、CA向終點(diǎn)C和A運(yùn)動.連接AM和BN,交于點(diǎn)P.求△APB周長的最大值.【答案】(1)AM⊥BN,證明見解析;(2)△APB周長的最大值4+4;(3)△PAB的周長最大值=2+4.【解析】試題分析:根據(jù)全等三角形的判定SAS證明△ABM≌△BCN,即可證得AM⊥BN;(2)如圖②,以AB為斜邊向外作等腰直角△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,連接EP,證明PA+PB=2EF,求出EF的最大值即可;(3)如圖③,延長DA到K,使得AK=AB,則△ABK是等邊三角形,連接PK,取PH=PB,證明PA+PB=PK,求出PK的最大值即可.試題解析:(1)結(jié)論:AM⊥BN.理由:如圖①中,∵四邊形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°,∵BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°,∴AM⊥BN.(2)如圖②中,以AB為斜邊向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,連接EP.∵∠EFP=∠FPG=∠G=90°,∴四邊形EFPG是矩形,∴∠FEG=∠AEB=90°,∴∠AEF=∠BEG,∵EA=EB,∠EFA=∠G=90°,∴△AEF≌△BEG,∴EF=EG,AF=BG,∴四邊形EFPG是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF的最大值=AE=2,∴△APB周長的最大值=4+4.(3)如圖③中,延長DA到K,使得AK=AB,則△ABK是等邊三角形,連接PK,取PH=PB.∵AB=BC,∠ABM=∠BCN,BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠APN=∠BAM+∠ABP=∠CBN+∠ABN=60°,∴∠APB=120°,∵∠AKB=60°,∴∠AKB+∠APB=180°,∴A、K、B、P四點(diǎn)共圓,∴∠BPH=∠KAB=60°,∵PH=PB,∴△PBH是等邊三角形,∴∠KBA=∠HBP,BH=BP,∴∠KBH=∠ABP,∵BK=BA,∴△KBH≌△ABP,∴HK=AP,∴PA+PB=KH+PH=PK,∴PK的值最大時,△APB的周長最大,∴當(dāng)PK是△ABK外接圓的直徑時,PK的值最大,最大值為4,∴△PAB的周長最大值=2+4.11.如圖1,矩形ABCD中,AB=8,AD=6;點(diǎn)E是對角線BD上一動點(diǎn),連接CE,作EF⊥CE交AB邊于點(diǎn)F,以CE和EF為鄰邊作矩形CEFG,作其對角線相交于點(diǎn)H.(1)①如圖2,當(dāng)點(diǎn)F與點(diǎn)B重合時,CE=,CG=;②如圖3,當(dāng)點(diǎn)E是BD中點(diǎn)時,CE=,CG=;(2)在圖1,連接BG,當(dāng)矩形CEFG隨著點(diǎn)E的運(yùn)動而變化時,猜想△EBG的形狀?并加以證明;(3)在圖1,的值是否會發(fā)生改變?若不變,求出它的值;若改變,說明理由;(4)在圖1,設(shè)DE的長為x,矩形CEFG的面積為S,試求S關(guān)于x的函數(shù)關(guān)系式,并直接寫出x的取值范圍.【答案】(1),,5,;(2)△EBG是直角三角形,理由詳見解析;(3);(4)S=x2﹣x+48(0≤x≤).【解析】【分析】(1)①利用面積法求出CE,再利用勾股定理求出EF即可;②利用直角三角形斜邊中線定理求出CE,再利用相似三角形的性質(zhì)求出EF即可;(2)根據(jù)直角三角形的判定方法:如果一個三角形一邊上的中線等于這條邊的一半,則這個三角形是直角三角形即可判斷;(3)只要證明△DCE∽△BCG,即可解決問題;(4)利用相似多邊形的性質(zhì)構(gòu)建函數(shù)關(guān)系式即可;【詳解】(1)①如圖2中,在Rt△BAD中,BD==10,∵S△BCD=?CD?BC=?BD?CE,∴CE=.CG=BE=.②如圖3中,過點(diǎn)E作MN⊥AM交AB于N,交CD于M.∵DE=BE,∴CE=BD=5,∵△CME∽△ENF,∴,∴CG=EF=,(2)結(jié)論:△EBG是直角三角形.理由:如圖1中,連接BH.在Rt△BCF中,∵FH=CH,∴BH=FH=CH,∵四邊形EFGC是矩形,∴EH=HG=HF=HC,∴BH=EH=HG,∴△EBG是直角三角形.(3)F如圖1中,∵HE=HC=HG=HB=HF,∴C、E、F、B、G五點(diǎn)共圓,∵EF=CG,∴∠CBG=∠EBF,∵CD∥AB,∴∠EBF=∠CDE,∴∠CBG=∠CDE,∵∠DCB=∠ECG=90°,∴∠DCE=∠BCG,∴△DCE∽△BCG,∴.(4)由(3)可知:,∴矩形CEFG∽矩形ABCD,∴,∵CE2=(-x)2+)2,S矩形ABCD=48,∴S矩形CEFG=[(-x)2+()2].∴矩形CEFG的面積S=x2-x+48(0≤x≤).【點(diǎn)睛】本題考查相似三角形綜合題、矩形的性質(zhì)、相似三角形的判定和性質(zhì)、勾股定理、直角三角形的判定和性質(zhì)、相似多邊形的性質(zhì)和判定等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,學(xué)會添加常用輔助線,構(gòu)造相似三角形或直角三角形解決問題,屬于中考壓軸題.12.小明在矩形紙片上畫正三角形,他的做法是:①對折矩形紙片ABCD(AB>BC),使AB與DC重合,得到折痕EF,把紙片展平;②沿折痕BG折疊紙片,使點(diǎn)C落在EF上的點(diǎn)P處,再折出PB、PC,最后用筆畫出△PBC(圖1).(1)求證:圖1中的PBC是正三角形:(2)如圖2,小明在矩形紙片HIJK上又畫了一個正三角形IMN,其中IJ=6cm,且HM=JN.①求證:IH=IJ②請求出NJ的長;(3)小明發(fā)現(xiàn):在矩形紙片中,若一邊長為6cm,當(dāng)另一邊的長度a變化時,在矩形紙片上總能畫出最大的正三角形,但位置會有所不同.請根據(jù)小明的發(fā)現(xiàn),畫出不同情形的示意圖(作圖工具不限,能說明問題即可),并直接寫出對應(yīng)的a的取值范圍.【答案】(1)證明見解析;(2)①證明見解析;②12-6(3)3<a<4,a>4【解析】分析:(1)由折疊的性質(zhì)和垂直平分線的性質(zhì)得出PB=PC,PB=CB,得出PB=PC=CB即可;(2)①利用“HL”證Rt△IHM≌Rt△IJN即可得;②IJ上取一點(diǎn)Q,使QI=QN,由Rt△IHM≌Rt△IJN知∠HIM=∠JIN=15°,繼而可得∠NQJ=30°,設(shè)NJ=x,則IQ=QN=2x、QJ=x,根據(jù)IJ=IQ+QJ求出x即可得;(3)由等邊三角形的性質(zhì)、直角三角形的性質(zhì)、勾股定理進(jìn)行計算,畫出圖形即可.(1)證明:∵①對折矩形紙片ABCD(AB>BC),使AB與DC重合,得到折痕EF∴PB=PC∵沿折痕BG折疊紙片,使點(diǎn)C落在EF上的點(diǎn)P處∴PB=BC∴PB=PC=BC∴△PBC是正三角形:(2)證明:①如圖∵矩形AHIJ∴∠H=∠J=90°∵△MNJ是等邊三角形∴MI=NI在Rt△MHI和Rt△JNI中∴Rt△MHI≌Rt△JNI(HL)∴HI=IJ②在線段IJ上取點(diǎn)Q,使IQ=NQ∵Rt△IHM≌Rt△IJN,∴∠HIM=∠JIN,∵∠HIJ=90°、∠MIN=60°,∴∠HIM=∠JIN=15°,由QI=QN知∠JIN=∠QNI=15°,∴∠NQJ=30°,設(shè)NJ=x,則IQ=QN=2x,QJ=x,∵IJ=6cm,∴2x+x=6,∴x=12-6,即NJ=12-6(cm).(3)分三種情況:①如圖:設(shè)等邊三角形的邊長為b,則0<b≤6,則tan60°=,∴a=,∴0<b≤=;②如圖當(dāng)DF與DC重合時,DF=DE=6,∴a=sin60°×DE==,當(dāng)DE與DA重合時,a=,∴<a<;③如圖∵△DEF是等邊三角形∴∠FDC=30°∴DF=∴a>點(diǎn)睛:本題是四邊形的綜合題目,考查了折疊的性質(zhì)、等邊三角形的判定與性質(zhì)、旋轉(zhuǎn)的性質(zhì)、直角三角形的性質(zhì)、正方形的性質(zhì)、全等三角形的判定與性質(zhì)等知識;本題綜合性強(qiáng),難度較大.13.如圖,P是邊長為1的正方形ABCD對角線BD上一動點(diǎn)(P與B、D不重合),∠APE=90°,且點(diǎn)E在BC邊上,AE交BD于點(diǎn)F.(1)求證:①△PAB≌△PCB;②PE=PC;(2)在點(diǎn)P的運(yùn)動過程中,的值是否改變?若不變,求出它的值;若改變,請說明理由;(3)設(shè)DP=x,當(dāng)x為何值時,AE∥PC,并判斷此時四邊形PAFC的形狀.【答案】(1)見解析;(2);(3)x=﹣1;四邊形PAFC是菱形.【解析】試題分析:(1)根據(jù)四邊形ABCD是正方形,得出AB=BC,∠ABP=∠CBP°,再根據(jù)PB=PB,即可證出△PAB≌△PCB,②根據(jù)∠PAB+∠PEB=180°,∠PEC+∠PEB=180°,得出∠PEC=∠PCB,從而證出PE=PC;(2)根據(jù)PA=PC,PE=PC,得出PA=PE,再根據(jù)∠APE=90°,得出∠PAE=∠PEA=45°,即可求出;(3)先求出∠CPE=∠PEA=45°,從而得出∠PCE,再求出∠BPC即可得出∠BPC=∠PCE,從而證出BP=BC=1,x=﹣1,再根據(jù)AE∥PC,得出∠AFP=∠BPC=67.5°,由△PAB≌△PCB得出∠BPA=∠BPC=67.5°,PA=PC,從而證出AF=AP=PC,得出答案.試題解析:(1)①∵四邊形ABCD是正方形,∴AB=BC,∠ABP=∠CBP=∠ABC=45°.∵PB=PB,∴△PAB≌△PCB(SAS).②由△PAB≌△PCB可知,∠PAB=∠PCB.∵∠ABE=∠APE=90°,∴∠PAB+∠PEB=180°,又∵∠PEC+∠PEB=180°,∴∠PEC=∠PAB=∠PCB,∴PE=PC.(2)在點(diǎn)P的運(yùn)動過程中,的值不改變.由△PAB≌△PCB可知,PA=PC.∵PE=PC,∴PA=PE,又∵∠APE=90°,∴△PAE是等腰直角三角形,∠PAE=∠PEA=45°,∴=.(3)∵AE∥PC,∴∠CPE=∠PEA=45°,∴在△PEC中,∠PCE=∠PEC=(180°﹣45°)=67.5°.在△PBC中,∠BPC=(180°﹣∠CBP﹣∠PCE)=(180°﹣45°﹣67.5°)=67.5°.∴∠BPC=∠PCE=67.5°,∴BP=BC=1,∴x=BD﹣BP=﹣1.∵AE∥PC,∴∠AFP=∠BPC=67.5°,由△PAB≌△PCB可知,∠BPA=∠BPC=67.5°,PA=PC,∴∠AFP=∠BPA,∴AF=AP=PC,∴四邊形PAFC是菱形.考點(diǎn):四邊形綜合題.14.正方形ABCD的邊長為1,對角線AC與BD相交于點(diǎn)O,點(diǎn)E是AB邊上的一個動點(diǎn)(點(diǎn)E不與點(diǎn)A、B重合),CE與BD相交于點(diǎn)F,設(shè)線段BE的長度為x.(1)如圖1,當(dāng)AD=2OF時,求出x的值;(2)如圖2,把線段CE繞點(diǎn)E順時針旋轉(zhuǎn)90°,使點(diǎn)C落在點(diǎn)P處,連接AP,設(shè)△APE的面積為S,試求S與x的函數(shù)關(guān)系式并求出S的最大值.【答案】(1)x=﹣1;(2)S=﹣(x﹣)2+(0<x<1),當(dāng)x=時,S的值最大,最大值為,.【解析】試題分析:(1)過O作OM∥AB交CE于點(diǎn)M,如圖1,由平行線等分線段定理得到CM=ME,根據(jù)三角形的中位線定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,求得OF=OM=解方程,即可得到結(jié)果;(2)過P作PG⊥AB交AB的延長線于G,如圖2,根據(jù)已知條件得到∠ECB=∠PEG,根據(jù)全等三角形的性質(zhì)得到EB=PG=x,由三角形的面積公式得到S=(1﹣x)?x,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.試題解析:(1)過O作OM∥AB交CE于點(diǎn)M,如圖1,∵OA=OC,∴CM=ME,∴AE=2OM=2OF,∴OM=OF,∴,∴BF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑工程質(zhì)量管理操作指南(標(biāo)準(zhǔn)版)
- 互聯(lián)網(wǎng)企業(yè)合規(guī)操作指南(標(biāo)準(zhǔn)版)
- 數(shù)字合成技術(shù)課件
- 未來五年旅游飲料服務(wù)企業(yè)ESG實踐與創(chuàng)新戰(zhàn)略分析研究報告
- 未來五年餐飲服務(wù)培訓(xùn)企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略分析研究報告
- 未來五年新形勢下醫(yī)療影像診斷設(shè)備行業(yè)順勢崛起戰(zhàn)略制定與實施分析研究報告
- 未來五年一級鋼筋企業(yè)縣域市場拓展與下沉戰(zhàn)略分析研究報告
- 通信行業(yè)客戶服務(wù)規(guī)范與操作流程(標(biāo)準(zhǔn)版)
- 2025至2030全球數(shù)字醫(yī)療服務(wù)平臺商業(yè)模式創(chuàng)新研究報告
- 2025至2030中國第三方醫(yī)學(xué)檢驗實驗室區(qū)域布局與并購策略分析報告
- 秦腔課件教學(xué)
- DB51-T 1959-2022 中小學(xué)校學(xué)生宿舍(公寓)管理服務(wù)規(guī)范
- 水利工程施工監(jiān)理規(guī)范(SL288-2014)用表填表說明及示例
- 妊娠合并膽汁淤積綜合征
- 河南省安陽市滑縣2024-2025學(xué)年高二數(shù)學(xué)上學(xué)期期末考試試題文
- 新疆維吾爾自治區(qū)普通高校學(xué)生轉(zhuǎn)學(xué)申請(備案)表
- 內(nèi)鏡中心年終總結(jié)
- 園林苗木容器育苗技術(shù)
- 陜西省2023-2024學(xué)年高一上學(xué)期新高考解讀及選科簡單指導(dǎo)(家長版)課件
- 兒科學(xué)熱性驚厥課件
- 《高職應(yīng)用數(shù)學(xué)》(教案)
評論
0/150
提交評論