重難點(diǎn)解析京改版數(shù)學(xué)9年級上冊期末測試卷附完整答案詳解(歷年真題)_第1頁
重難點(diǎn)解析京改版數(shù)學(xué)9年級上冊期末測試卷附完整答案詳解(歷年真題)_第2頁
重難點(diǎn)解析京改版數(shù)學(xué)9年級上冊期末測試卷附完整答案詳解(歷年真題)_第3頁
重難點(diǎn)解析京改版數(shù)學(xué)9年級上冊期末測試卷附完整答案詳解(歷年真題)_第4頁
重難點(diǎn)解析京改版數(shù)學(xué)9年級上冊期末測試卷附完整答案詳解(歷年真題)_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

京改版數(shù)學(xué)9年級上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、三孔橋橫截面的三個孔都呈拋物線形,兩小孔形狀、大小完全相同.當(dāng)水面剛好淹沒小孔時,大孔水面寬度為10米,孔頂離水面1.5米;當(dāng)水位下降,大孔水面寬度為14米時,單個小孔的水面寬度為4米,若大孔水面寬度為20米,則單個小孔的水面寬度為()A.4米 B.5米 C.2米 D.7米2、若函數(shù)y=(a﹣1)x2+2x+a2﹣1是二次函數(shù),則()A.a(chǎn)≠1 B.a(chǎn)≠﹣1 C.a(chǎn)=1 D.a(chǎn)=±13、在Rt△ABC中,∠C=90°,a、b、c分別是∠A、∠B、∠C的對邊,則()A. B. C. D.4、在平面直角坐標(biāo)系中,將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線對應(yīng)的函數(shù)表達(dá)式為(

)A. B. C. D.5、如圖,菱形ABCD中,∠BAD=60°,AC、BD交于點(diǎn)O,E為CD延長線上的一點(diǎn),且CD=DE,連接BE分別交AC,AD于點(diǎn)F、G,連結(jié)OG、AE.則下列結(jié)論:①OG=AB;

②四邊形ABDE是菱形;③;其中正確的是(

)A.①② B.①③ C.②③ D.①②③6、當(dāng)0x3,函數(shù)y=﹣x2+4x+5的最大值與最小值分別是()A.9,5 B.8,5 C.9,8 D.8,4二、多選題(7小題,每小題2分,共計14分)1、下列四個命題中正確的命題有(

)A.兩個矩形一定相似 B.兩個菱形都有一個角是40°,那么這兩個菱形相似C.兩個正方形一定相似 D.有一個角相等的兩個等腰梯形相似2、下列說法中,不正確的是(

)A.平分一條直徑的弦必垂直于這條直徑B.平分一條弧的直線垂直于這條弧所對的弦C.弦的垂線必經(jīng)過這條弦所在圓的圓心D.在一個圓內(nèi)平分一條弧和平分它所對的弦的直線必經(jīng)過這個圓的圓心3、下表時二次函數(shù)y=ax2+bx+c的x,y的部分對應(yīng)值:…………則對于該函數(shù)的性質(zhì)的判斷中正確的是()A.該二次函數(shù)有最大值B.不等式y(tǒng)>﹣1的解集是x<0或x>2C.方程y=ax2+bx+c的兩個實(shí)數(shù)根分別位于﹣<x<0和2<x<之間D.當(dāng)x>0時,函數(shù)值y隨x的增大而增大4、如圖,下列條件能判定△ABC與△ADE相似的是(

)A. B.∠B=∠ADEC. D.∠C=∠AED5、下列四個命題中正確的是(

)A.與圓有公共點(diǎn)的直線是該圓的切線B.垂直于圓的半徑的直線是該圓的切線C.到圓心的距離等于半徑的直線是該圓的切線D.過圓直徑的端點(diǎn),垂直于此直徑的直線是該圓的切線6、下列用尺規(guī)等分圓周的說法中,正確的是(

)A.在圓上依次截取等于半徑的弦,就可以六等分圓B.作相互垂直的兩條直徑,就可以四等分圓C.按A的方法將圓六等分,六個等分點(diǎn)中三個不相鄰的點(diǎn)三等分圓D.按B的方法將圓四等分,再平分四條弧,就可以八等分圓周7、利用反例可以判斷一個命題是錯誤的,下列命題錯誤的是(

)A.若,則 B.對角線相等的四邊形是矩形C.函數(shù)的圖象是中心對稱圖形 D.六邊形的外角和大于五邊形的外角和第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、二次函數(shù)y=ax2+bx+c圖象上部分點(diǎn)的橫坐標(biāo)x與縱坐標(biāo)y的對應(yīng)值如表格所示,那么它的圖象與x軸的另一個交點(diǎn)坐標(biāo)是_____.2、如圖,,,是⊙O上的三個點(diǎn),四邊形是平行四邊形,連接,,若,則_____.3、如圖,有長為24米的籬笆,一面利用墻(墻的最大可用長度為10米),圍成中間隔有一道籬笆的長方形花圃.設(shè)花圃的寬AB為x米,面積為S平方米.則S與x的函數(shù)關(guān)系式是____________,自變量x的取值范圍是____________.4、如圖,D是△ABC的邊BC上一點(diǎn),,,.如果的面積為15,那么的面積為______.5、已知點(diǎn)A(3,a)、B(-1,b)在函數(shù)的圖像上,那么a___b(填“>”或“=”或“<”)6、如圖,在△ABC中,∠B=45°,tanC=,AB=,則AC=_____.7、把拋物線向左平移1個單位長度,再向下平移3個單位長度,得到的拋物線的解析式為___.四、解答題(6小題,每小題10分,共計60分)1、若二次函數(shù)圖像經(jīng)過,兩點(diǎn),求、的值.2、據(jù)說,在距今2500多年前,古希臘數(shù)學(xué)家就已經(jīng)較準(zhǔn)確地測出了埃及金字塔的高度,操作過程大致如下:如圖所示,設(shè)AB是金字塔的高,在某一時刻,陽光照射下的金字塔在底面上投下了一個清晰的陰影,塔頂A的影子落在地面上的點(diǎn)C處,金字塔底部可看作方正形FGHI,測得正方形邊長FG長為160米,點(diǎn)B在正方形的中心,BC與金字塔底部一邊垂直于點(diǎn)K,與此同時,直立地面上的一根標(biāo)桿DO留下的影子是OE,射向地面的太陽光線可看作平行線(AC∥DE),此時測得標(biāo)桿DO長為1.2米,影子OE長為2.7米,KC長為250米,求金字塔的高度AB及斜坡AK的坡度(結(jié)果均保留四個有效數(shù)字)3、五一期間,小明跟父母去烏鎮(zhèn)旅游,欣賞烏鎮(zhèn)水鄉(xiāng)的美景.如圖,當(dāng)小明走到烏鎮(zhèn)古橋的C處時,發(fā)現(xiàn)遠(yuǎn)處有一瞍船勻速行駛過來,當(dāng)船行駛到A處時,小明測得船頭的俯角為30°,同時小明開始計時,船在航行過小明所在的橋之后,繼續(xù)向前航行到達(dá)B處,此時測得船尾的俯角為45°;從小明開始計時到船行駛至B處,共用時15min;已知小明所在位置距離水面6m,船長3m,船到水面的距離忽略不計,請你幫助小明計算一下船的航行速度(結(jié)果保留根號)4、冰墩墩是2022年北京冬季奧運(yùn)會的吉祥物.冰墩墩以熊貓為原型設(shè)計,寓意創(chuàng)造非凡、探索未來.某超市用2400元購進(jìn)一批冰墩墩玩偶出售.若進(jìn)價降低20%,則可以多買50個.市場調(diào)查發(fā)現(xiàn):當(dāng)每個冰墩墩玩偶的售價是20元時,每周可以銷售200個;每漲價1元,每周少銷售10個.(1)求每個冰墩墩玩偶的進(jìn)價;(2)設(shè)每個冰墩墩玩偶的售價是x元(x是大于20的正整數(shù)),每周總利潤是w元.①求w關(guān)于x的函數(shù)解析式,并求每周總利潤的最大值;②當(dāng)每周總利潤不低于1870元時,求每個冰墩墩玩偶售價x的范圍.5、內(nèi)接于⊙O,在劣弧上,連交于,連,.(1)如圖1,求證:;(2)如圖2,平分,求證:;(3)如圖3,在(2)條件下,點(diǎn)在延長線上,連,于,,,,求⊙O半徑的長.6、(1)閱讀理解如圖,點(diǎn),在反比例函數(shù)的圖象上,連接,取線段的中點(diǎn).分別過點(diǎn),,作軸的垂線,垂足為,,,交反比例函數(shù)的圖象于點(diǎn).點(diǎn),,的橫坐標(biāo)分別為,,.小紅通過觀察反比例函數(shù)的圖象,并運(yùn)用幾何知識得出結(jié)論:AE+BG=2CF,CF>DF,由此得出一個關(guān)于,,之間數(shù)量關(guān)系的命題:若,則______.(2)證明命題小東認(rèn)為:可以通過“若,則”的思路證明上述命題.小晴認(rèn)為:可以通過“若,,且,則”的思路證明上述命題.請你選擇一種方法證明(1)中的命題.-參考答案-一、單選題1、B【解析】【分析】根據(jù)題意,可以畫出相應(yīng)的拋物線,然后即可得到大孔所在拋物線解析式,再求出頂點(diǎn)為A的小孔所在拋物線的解析式,將x=﹣10代入可求解.【詳解】解:如圖,建立如圖所示的平面直角坐標(biāo)系,由題意可得MN=4,EF=14,BC=10,DO=,設(shè)大孔所在拋物線解析式為y=ax2+,∵BC=10,∴點(diǎn)B(﹣5,0),∴0=a×(﹣5)2+,∴a=-,∴大孔所在拋物線解析式為y=-x2+,設(shè)點(diǎn)A(b,0),則設(shè)頂點(diǎn)為A的小孔所在拋物線的解析式為y=m(x﹣b)2,∵EF=14,∴點(diǎn)E的橫坐標(biāo)為-7,∴點(diǎn)E坐標(biāo)為(-7,-),

∴-=m(x﹣b)2,∴x1=+b,x2=-+b,∴MN=4,∴|+b-(-+b)|=4∴m=-,∴頂點(diǎn)為A的小孔所在拋物線的解析式為y=-(x﹣b)2,∵大孔水面寬度為20米,∴當(dāng)x=-10時,y=-,∴-=-(x﹣b)2,∴x1=+b,x2=-+b,∴單個小孔的水面寬度=|(+b)-(-+b)|=5(米),故選:B.【考點(diǎn)】本題考查二次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.2、A【解析】【分析】利用二次函數(shù)定義進(jìn)行解答即可.【詳解】解:由題意得:a﹣1≠0,解得:a≠1,故選:A.【考點(diǎn)】本題主要考查了二次函數(shù)的定義,準(zhǔn)確計算是解題的關(guān)鍵.3、C【解析】【分析】根據(jù)Rt△ABC中,cos

B,tan

B,sin

A的定義,進(jìn)行判斷.【詳解】∵Rt△ABC中,sinA=,cosA=,sin

B=,tanB=,∴選項(xiàng)C正確,選項(xiàng)A、B、D錯誤,故選C.【考點(diǎn)】本題考查了銳角三角函數(shù)的定義.關(guān)鍵是熟練掌握銳角三角函數(shù)的定義及其變形.4、B【解析】【分析】先求出平移后拋物線的頂點(diǎn)坐標(biāo),進(jìn)而即可得到答案.【詳解】解:∵的頂點(diǎn)坐標(biāo)為(0,0)∴將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線的頂點(diǎn)坐標(biāo)為(-2,1),∴所得拋物線對應(yīng)的函數(shù)表達(dá)式為,故選B【考點(diǎn)】本題主要考查二次函數(shù)的平移規(guī)律,找出平移后二次函數(shù)圖像的頂點(diǎn)坐標(biāo)或掌握“左加右減,上加下減”,是解題的關(guān)鍵.5、D【解析】【分析】證明四邊形ABDE為平行四邊形可得OB=OD,由菱形ABCD可得AG=DG,根據(jù)三角形中位線定理可判斷①;根據(jù)等邊三角形的性質(zhì)和判定可得△ABD為等邊三角形AB=BD,從而可判斷平行四邊形ABDE是菱形,由此判斷②;借助相似三角形的性質(zhì)和判定,三角形中線有關(guān)的面積問題可判斷③.【詳解】解:∵四邊形ABCD是菱形,∴AB∥CD,AB=CD=AD,OA=OC,OB=OD,∵CD=DE,∴AB=DE.又∵AB∥DE,∴四邊形ABDE是平行四邊形,∴BG=EG,AB=DE,AG=DG,又∵OD=OB,∴OG是△BDA是中位線,∴OG=AB,故①正確;∵∠BAD=60°,AB=AD,∴△BAD是等邊三角形,∴BD=AB,∴是菱形,故②正確;∵OB=OD,AG=DG,∴OG是△ABD的中位線,∴OG∥AB,OG=AB,∴△GOD∽△ABD(ASA),△ABF∽△OGF(ASA),∴△GOD的面積=△ABD的面積,△ABF的面積=△OGF的面積的4倍,AF:OF=2:1,∴△AFG的面積=△OGF的面積的2倍,又∵△GOD的面積=△AOG的面積=△BOG的面積,∴S四邊形ODGF=S△ABF;故③正確;故選:D.【考點(diǎn)】本題考查了菱形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)、三角形中位線定理、相似三角形的判定與性質(zhì)等知識.判斷①的關(guān)鍵是三角形中位線定理的運(yùn)用,②的關(guān)鍵是利用等邊三角形證明BD=AB;③的關(guān)鍵是通過相似得出面積之間的關(guān)系.6、A【解析】【分析】利用配方法把原方程化為頂點(diǎn)式,再根據(jù)二次函數(shù)的性質(zhì)即可解答.【詳解】y=﹣x2+4x+5=﹣x2+4x﹣4+4+5=﹣(x﹣2)2+9,∴當(dāng)x=2時,最大值是9,∵0≤x≤3,∴x=0時,最小值是5,故選:A.【考點(diǎn)】本題考查二次函數(shù)的最值,掌握二次函數(shù)的性質(zhì)與利用配方法將一般式改為頂點(diǎn)式是解答本題的關(guān)鍵.二、多選題1、BC【解析】【分析】根據(jù)兩個圖形相似的性質(zhì)及判定方法,對應(yīng)邊的比相等,對應(yīng)角相等,兩個條件同時滿足來判斷正誤.【詳解】解:A兩個矩形對應(yīng)角都是直角相等,對應(yīng)邊不一定成比例,所以不一定相似,故本小題錯誤;B兩個菱形有一個角相等,則其它對應(yīng)角也相等,對應(yīng)邊成比例,所以一定相似,故本小題正確;C兩個正方形一定相似,正確;D有一個角相等的兩個等腰梯形,對應(yīng)角一定相等,但對應(yīng)邊的比不一定相等,故本小題錯誤.故選:BC.【考點(diǎn)】本題考查的是相似多邊形的判定及菱形,矩形,正方形,等腰梯形的性質(zhì)及其定義.2、ABC【解析】【分析】根據(jù)垂徑定理的推論,即如果一條直線滿足:①垂直于弦,②平分弦,③過圓心,④平分優(yōu)弧,⑤平分劣弧中的兩個條件,即可推論出其余三個,逐一進(jìn)行判斷即可.【詳解】解:A、由于直徑也是弦,所以平分一條直徑的弦不一定垂直這條直徑,選項(xiàng)說法錯誤,符合題意;B、平分一條弧的直線不一定垂直于這條弧,應(yīng)該是:過圓心,且平分一條弧的直線垂直于這條弧所對的弦,選項(xiàng)說法錯誤,符合題意;C、弦的垂線不一定經(jīng)過這條弦所在的圓心,應(yīng)該是:弦的垂直平分線必經(jīng)過這條弦所在的圓心,選項(xiàng)說法錯誤,符合題意;D、在一個圓內(nèi),平分一條弧和它所對弦的直線必經(jīng)過這個圓的圓心,選項(xiàng)說法正確,不符合題意;故選ABC.【考點(diǎn)】本題考查了垂徑定理,解題的關(guān)鍵是掌握垂徑定理及其推論.3、BC【解析】【分析】由圖表可得二次函數(shù)y=ax2+bx+c的對稱軸為直線x=1,a>0,即可判斷A,D不正確,由圖表可直接判斷B,C正確.【詳解】解:∵當(dāng)x=0時,y=-1;當(dāng)x=2時,y=-1;當(dāng)x=,y=;當(dāng)x=,y=;∴二次函數(shù)y=ax2+bx+c的對稱軸為直線x=1,x>1時,y隨x的增大而增大,x<1時,y隨x的增大而減?。郺>0即二次函數(shù)有最小值則A,D錯誤由圖表可得:不等式y(tǒng)>-1的解集是x<0或x>2;由圖表可得:方程ax2+bx+c=0的兩個實(shí)數(shù)根分別位于-<x<0和2<x<之間;所以選項(xiàng)B,C正確,故選:BC.【考點(diǎn)】本題考查了拋物線與x軸的交點(diǎn),二次函數(shù)的性質(zhì),二次函數(shù)的最值,理解圖表中信息是本題的關(guān)鍵.4、ABD【解析】【分析】利用兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似可對A、C進(jìn)行判斷;根據(jù)有兩組角對應(yīng)相等的兩個三角形相似可對B、C進(jìn)行判斷.【詳解】解:∵∠EAD=∠BAC,當(dāng),∠A=∠A,∴△ABC∽△ADE,故選項(xiàng)A符合題意;當(dāng)∠B=∠ADE時,△ABC∽△ADE,故選項(xiàng)B符合題意;C選項(xiàng)中角A不是成比例的兩邊的夾角,故選項(xiàng)C不符合題意;當(dāng)∠C=∠AED時,△ABC∽△ADE,故選項(xiàng)D符合題意;故選:ABD.【考點(diǎn)】本題考查了相似三角形的判定:①有兩個對應(yīng)角相等的三角形相似;②有兩個對應(yīng)邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應(yīng)邊的比相等,則兩個三角形相似.5、CD【解析】【分析】要正確理解切線的定義:和圓有唯一公共點(diǎn)的直線是圓的切線.掌握切線的判定:①經(jīng)過半徑的外端,且垂直于這條半徑的直線,是圓的切線;②到圓心的距離等于半徑的直線是該圓的切線.【詳解】解:A中,與圓有兩個公共點(diǎn)的直線,是圓的割線,故該選項(xiàng)不符合題意;B中,應(yīng)經(jīng)過此半徑的外端,故該選項(xiàng)不符合題意;C中,根據(jù)切線的判定方法,故該選項(xiàng)符合題意;D中,根據(jù)切線的判定方法,故該選項(xiàng)符合題意.故選:CD.【考點(diǎn)】本題考查了切線的判定.注意掌握切線的判定定理與切線的定義是解此題的關(guān)鍵.6、ABCD【解析】【分析】由圓心角、弧、弦的關(guān)系定理得出ABCD正確,即可得出結(jié)論.【詳解】解:根據(jù)圓心角、弧、弦的關(guān)系定理得:在圓上依次截取等于半徑的弦,六條弧相等,就可以六等分圓,∴A正確;∵相互垂直的兩條直徑得出4個相等的圓心角是直角,∴4條弧相等,∴B正確;在圓上依次截取等于半徑的弦,六條弧相等,六個等分點(diǎn)中三個不相鄰的點(diǎn)三等分圓,∴C正確;∵相互垂直的兩條直徑得出4個相等的圓心角是直角,再平分四條弧,就可以八等分圓周,∴D正確;故選:ABCD.【考點(diǎn)】本題考查了正多邊形和圓、圓心角、弧、弦的關(guān)系定理;熟練掌握圓心角、弧、弦的關(guān)系定理,由題意得出相等的弧是解題的關(guān)鍵.7、ABD【解析】【分析】根據(jù)有理數(shù)的乘法、矩形的判定定理、反比例函數(shù)的性質(zhì)、多邊形的外角性質(zhì)逐一判斷即可.【詳解】解:A、當(dāng)b=0,a≠0時,則,該選項(xiàng)符合題意;B、如圖:四邊形ABCD的對角線AC=BD,但四邊形ABCD不是矩形,該選項(xiàng)符合題意;C、函數(shù)的圖象是中心對稱圖形,該選項(xiàng)不符合題意;D、多邊形的外角和都相等,等于360°,該選項(xiàng)符合題意;故選:ABD.【考點(diǎn)】本題考查了命題與定理的知識,解題的關(guān)鍵是了解判斷一個命題是假命題的時候可以舉出反例.三、填空題1、(1,0)【解析】【分析】根據(jù)表中數(shù)據(jù)得到點(diǎn)(-2,-3)和(0,-3)對稱點(diǎn),從而得到拋物線的對稱軸為直線x=-1,再利用表中數(shù)據(jù)得到拋物線與x軸的一個交點(diǎn)坐標(biāo)為(-3,0),然后根據(jù)拋物線的對稱性就看得到拋物線與x軸的一個交點(diǎn)坐標(biāo).【詳解】∵x=-2,y=-3;x=0時,y=-3,∴拋物線的對稱軸為直線x=-1,∵拋物線與x軸的一個交點(diǎn)坐標(biāo)為(-3,0),∴拋物線與x軸的一個交點(diǎn)坐標(biāo)為(1,0).故答案為(1,0).【考點(diǎn)】本題考查了拋物線與x軸的交點(diǎn):把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo)問題轉(zhuǎn)化解關(guān)于x的一元二次方程即可求得交點(diǎn)橫坐標(biāo).也考查了二次函數(shù)的性質(zhì).2、64【解析】【分析】先根據(jù)圓周角定理求出∠O的度數(shù),然后根據(jù)平行四邊形的對角相等求解即可.【詳解】∵,∴∠O=2,∵四邊形是平行四邊形,∴∠O=.故答案為:64.【考點(diǎn)】本題考查了圓周角定理,平行四變形的性質(zhì),熟練掌握圓周角定理是解答本題的關(guān)鍵.在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半.3、

S=-3x2+24x

≤x<8【解析】【詳解】可先用籬笆的長表示出BC的長,然后根據(jù)矩形的面積=長×寬,得出S與x的函數(shù)關(guān)系式,并根據(jù)墻的最大可用長度為10米,列不等式組即可得出自變量的取值范圍.解:由題可知,花圃的寬AB為x米,則BC為(24?3x)米.∴S=x(24?3x)=?3x2+24x.∵0<24?3x≤10,解得≤x<8,故答案為S=-3x2+24x,≤x<8.4、5【解析】【分析】先證明△ACD∽△BCA,再根據(jù)相似三角形的性質(zhì)得到:△ACD的面積:△ABC的面積為1:4,再結(jié)合△ABD的面積為15,然后求出△ACD的面積即可.【詳解】∵,,∴,∵,,∴,∴的面積,故答案是:5.【考點(diǎn)】本題主要考查了相似三角形的判定和性質(zhì)、掌握相似三角形的面積比等于相似比的平方是解答本題的關(guān)鍵.5、<【解析】【分析】把點(diǎn)A(3,a),B(-1,b)代入函數(shù)上求出a、b的值,再進(jìn)行比較即可.【詳解】把點(diǎn)A(3,a)代入函數(shù)可得,a=-1;把點(diǎn)B(-1,b)代入函數(shù)可得,b=3;∵3>-1,即a<b.故答案為:<.【考點(diǎn)】本題比較簡單,考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn),即反比例函數(shù)圖象上點(diǎn)的坐標(biāo)一定適合此函數(shù)的解析式.6、【解析】【分析】先過點(diǎn)A作AD⊥BC,垂足是點(diǎn)D,得出AD2+BD2=AB2=2,再根據(jù)∠B=45°,得出AD=BD=1,然后根據(jù)tanC=,得出=,CD=2,最后根據(jù)勾股定理即可求出AC.【詳解】過點(diǎn)A作AD⊥BC,垂足是點(diǎn)D,∵AB=,∴AD2+BD2=AB2=2,∵∠B=45°,∴∠BAD=∠B=45°,∴AD=BD,∴AD2=BD2=1,∴AD=BD=1,∵tanC=,∴=,∴CD=2,∴AC===.故答案為.【考點(diǎn)】此題考查了解直角三角形,用到的知識點(diǎn)是勾股定理、解直角三角形等,關(guān)鍵是作出輔助線,構(gòu)造直角三角形.7、【解析】【分析】直接根據(jù)“上加下減,左加右減”進(jìn)行計算即可.【詳解】解:拋物線向左平移1個單位長度,再向下平移3個單位長度,得到的拋物線的解析式為:,即:故答案為:.【考點(diǎn)】本題主要考查函數(shù)圖像的平移,熟記函數(shù)圖像的平移方式“上加下減,左加右減”是解題的關(guān)鍵.四、解答題1、b=-3,c=-4.【解析】【分析】將,代入中,求解二元一次方程組即可解題.【詳解】解:將,代入中得,解得:∴b=-3,c=-4.【考點(diǎn)】本題考查了含參數(shù)的二次函數(shù)的求解,屬于簡單題,熟悉求解二元一次方程組的方法是解題關(guān)鍵.2、金字塔的高度AB為米,斜坡AK的坡度為1.833.【解析】【分析】根據(jù)同一時刻物高與影長成正比例列式計算即可.【詳解】解:∵FGHI是正方形,點(diǎn)B在正方形的中心,BC⊥HG,∴BK∥FG,BK==×160=80,∵根據(jù)同一時刻物高與影長成正比例,∴,即,解得:AB=米,連接AK,=1.833.∴金字塔的高度AB為米,斜坡AK的坡度為1.833.【考點(diǎn)】本題考查了相似三角形的應(yīng)用,只要是把實(shí)際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程,通過解方程求解,解此題的關(guān)鍵是找到各部分以及與其對應(yīng)的影長.3、船的航行速度為m/min.【解析】【分析】連接AB,過點(diǎn)C作CD⊥AB交于點(diǎn)D,根據(jù)題意得出,,CD=6米,利用銳角三角函數(shù)得出米,米,結(jié)合圖形及速度求法即可得出結(jié)果.【詳解】解:如圖所示,連接AB,過點(diǎn)C作CD⊥AB交于點(diǎn)D,根據(jù)題意可得:,,CD=6米,在中,(米),在中,米,∴米,∵船長為3米,∴船航行距離為:米,∴船的速度為:,答:船的航行速度為m/min.【考點(diǎn)】本題主要考查銳角三角函數(shù)的實(shí)際應(yīng)用,理解題意,構(gòu)建直角三角形是解題關(guān)鍵.4、(1)每個冰墩墩鑰匙扣的進(jìn)價為12元(2)①,最大值為1960元;②每個冰墩墩玩偶售價x的范圍為:【解析】【分析】(1)設(shè)每個冰墩墩鑰匙扣的進(jìn)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論