綜合解析人教版8年級數(shù)學(xué)下冊《平行四邊形》同步練習(xí)練習(xí)題_第1頁
綜合解析人教版8年級數(shù)學(xué)下冊《平行四邊形》同步練習(xí)練習(xí)題_第2頁
綜合解析人教版8年級數(shù)學(xué)下冊《平行四邊形》同步練習(xí)練習(xí)題_第3頁
綜合解析人教版8年級數(shù)學(xué)下冊《平行四邊形》同步練習(xí)練習(xí)題_第4頁
綜合解析人教版8年級數(shù)學(xué)下冊《平行四邊形》同步練習(xí)練習(xí)題_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)下冊《平行四邊形》同步練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖菱形ABCD,對角線AC,BD相交于點(diǎn)O,若BD=8,AC=6,則AB的長是()A.5 B.6 C.8 D.102、若一個直角三角形的周長為,斜邊上的中線長為1,則此直角三角形的面積為()A. B. C. D.3、如圖,矩形ABCD的面積為1cm2,對角線交于點(diǎn)O;以AB、AO為鄰邊作平行四邊形AOC1B,對角線交于點(diǎn)O1;以AB、AO1為鄰邊作平行四邊形AO1C2B,…;依此類推,則平行四邊形AO2014C2015B的面積為()cmA.

B.

C.

D.4、如圖,把正方形紙片ABCD沿對邊中點(diǎn)所在的直線對折后展開,折痕為MN,再過點(diǎn)B折疊紙片,使點(diǎn)A落在MN上的點(diǎn)F處,折痕為BE,若AB的長為2,則FM的長為()A.2 B. C. D.15、下列條件中,能判定四邊形是正方形的是()A.對角線相等的平行四邊形 B.對角線互相平分且垂直的四邊形C.對角線互相垂直且相等的四邊形 D.對角線相等且互相垂直的平行四邊形第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、在五邊形紙片ABCDE中,AB=2,∠A=120°,將五邊形紙片ABCDE沿BD折疊,點(diǎn)C落在點(diǎn)P處;在AE上取一點(diǎn)Q,將ABQ,EDQ分別沿BQ,DQ折疊,點(diǎn)A,E恰好落在點(diǎn)P處,如圖1.(1)∠BPQ=______°;(2)∠BCD+∠QED=_______°;(3)如圖2,當(dāng)四邊形BCDP是菱形,且Q,P,C三點(diǎn)共線時(shí),BQ=_______.2、如圖,在正方形紙片ABCD中,E是CD的中點(diǎn),將正方形紙片折疊,點(diǎn)B落在線段AE上的點(diǎn)G處,折痕為AF.若,則CF的長為_____.3、如圖,O為坐標(biāo)原點(diǎn),△ABO的兩個頂點(diǎn)A(6,0),B(6,6),點(diǎn)D在邊AB上,點(diǎn)C在邊OA上,且BD=AC=1,點(diǎn)P為邊OB上的動點(diǎn),則PC+PD的最小值為_____.4、如圖,在平行四邊形ABCD中,,E、F分別在CD和BC的延長線上,,,則______.5、如圖,在矩形ABCD中,AD=3AB,點(diǎn)G,H分別在AD,BC上,連BG,DH,且,當(dāng)=_______時(shí),四邊形BHDG為菱形.三、解答題(5小題,每小題10分,共計(jì)50分)1、已知:?ABCD的對角線AC,BD相交于O,M是AO的中點(diǎn),N是CO的中點(diǎn),求證:BM∥DN,BM=DN.

2、如圖,中,.(1)作點(diǎn)A關(guān)于的對稱點(diǎn)C;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)(2)在(1)所作的圖中,連接,,連接,交于點(diǎn)O.求證:四邊形是菱形.3、如圖,四邊形ABCD是菱形,DE⊥AB、DF⊥BC,垂足分別為E、F.求證:BE=BF.4、如圖,將長方形ABCD沿著對角線BD折疊,使點(diǎn)C落在C′處,BC′交AD于點(diǎn)E.(1)試判斷△BDE的形狀,并說明理由;(2)若AB=6,BC=18,求△BDE的面積.5、(3)點(diǎn)P為AC上一動點(diǎn),則PE+PF最小值為.-參考答案-一、單選題1、A【解析】【分析】由菱形的性質(zhì)可得OA=OC=3,OB=OD=4,AO⊥BO,由勾股定理求出AB.【詳解】解:∵四邊形ABCD是菱形,AC=6,BD=8,∴OA=OC=3,OB=OD=4,AO⊥BO,在Rt△AOB中,由勾股定理得:,故選:A.【點(diǎn)睛】本題考查了菱形的性質(zhì)、勾股定理等知識;熟練掌握菱形對角線互相垂直且平分的性質(zhì)是解題的關(guān)鍵.2、B【解析】【分析】根據(jù)直角三角形斜邊上中線的性質(zhì),可得斜邊為2,然后利用兩直角邊之間的關(guān)系以及勾股定理求出兩直角邊之積,從而確定面積.【詳解】解:根據(jù)直角三角形斜邊上中線的性質(zhì)可知,斜邊上的中線等于斜邊的一半,得AC=2BD=2.∵一個直角三角形的周長為3+,∴AB+BC=3+-2=1+.等式兩邊平方得(AB+BC)2=(1+)2,即AB2+BC2+2AB?BC=4+2,∵AB2+BC2=AC2=4,∴2AB?BC=2,AB?BC=,即三角形的面積為×AB?BC=.故選:B.【點(diǎn)睛】本題考查直角三角形斜邊上的中線,勾股定理,三角形的面積等知識點(diǎn)的理解和掌握,巧妙求出AC?BC的值是解此題的關(guān)鍵,值得學(xué)習(xí)應(yīng)用.3、C【解析】【分析】根據(jù)“同底等高”的原則可知平行四邊形AOC1B底邊AB上的高等于BC的,則有平行四邊形AOC1B的面積,平行四邊形AOC2B的邊AB上的高等于平行四邊形AOC1B底邊AB上的高的,則有平行四邊形ABC3O2的面積,…;由此規(guī)律可進(jìn)行求解.【詳解】解:∵O1為矩形ABCD的對角線的交點(diǎn),∴平行四邊形AOC1B底邊AB上的高等于BC的,∴平行四邊形AOC1B的面積=×1=,∵平行四邊形AO1C2B的對角線交于點(diǎn)O2,∴平行四邊形AOC2B的邊AB上的高等于平行四邊形AOC1B底邊AB上的高的,∴平行四邊形ABC3O2的面積=××1=,…,依此類推,平行四邊形ABC2014O2015的面積=cm2.故答案為:C.【點(diǎn)睛】本題主要考查矩形的性質(zhì)與平行四邊形的性質(zhì),熟練掌握矩形的性質(zhì)與平行四邊形的性質(zhì)是解題的關(guān)鍵.4、B【解析】【分析】由折疊的性質(zhì)可得,∠BMN=90°,F(xiàn)B=AB=2,由此利用勾股定理求解即可.【詳解】解:∵把正方形紙片ABCD沿對邊中點(diǎn)所在的直線對折后展開,折痕為MN,AB=2,∴,∠BMN=90°,∵四邊形ABCD為正方形,AB=2,過點(diǎn)B折疊紙片,使點(diǎn)A落在MN上的點(diǎn)F處,∴FB=AB=2,則在Rt△BMF中,,故選B.【點(diǎn)睛】本題主要考查了正方形與折疊,勾股定理,解題的關(guān)鍵在于能夠熟練掌握折疊的性質(zhì).5、D【解析】【分析】根據(jù)正方形的判定定理進(jìn)行判斷即可.【詳解】解:A、對角線相等的平行四邊形是矩形,不符合題意;B、對角線互相平分且垂直的四邊形是菱形,不符合題意;對角線相等且互相垂直的平行四邊形是正方形,故C選項(xiàng)不符合題意;D選項(xiàng)符合題意;故選:D.【點(diǎn)睛】本題考查了正方形的判定,熟知正方形的判定定理是解本題的關(guān)鍵.二、填空題1、120240【解析】【分析】(1)由折疊的性質(zhì)可得∠A=∠BPQ=120°;(2)由周角的性質(zhì)可得∠BPD+∠QPD+∠BPQ=360°,即可求解;(3)由菱形的性質(zhì)可得BQ=QD,QH⊥BD,BH=DH,由“SSS”可證△ABQ≌△EDQ,可得∠AQB=∠BQP=∠EQD=∠PQD=45°,由直角三角形的性質(zhì)可求解.【詳解】解:(1)∵將五邊形紙片ABCDE沿BD折疊,∴∠A=∠BPQ=120°,∠QED=∠QPD,∠BCD=∠BPD,故答案為:120;(2)∵∠BPD+∠QPD+∠BPQ=360°,∴∠BPD+∠QPD=240°,∴∠BCD+∠QED=240°,故答案為:240;(3)如圖,連接PC,交BD于H,∵四邊形BPDC是菱形,∴PC是BD的垂直平分線,BP=PD=BC=CD,∵Q,P,C三點(diǎn)共線,∴QC是BD的垂直平分線,∴BQ=QD,QH⊥BD,BH=DH,由折疊可知:∠A=∠BPQ=120°,AB=BP=2=DE=DP,∠AQB=∠BQP,∠EQD=∠PQD,AQ=QP=QE,∴∠BPH=60°,∴∠PBH=30°,∴PHBP=1,BHPH,在△ABQ和△EDQ中,,∴△ABQ≌△EDQ(SSS),∴∠AQB=∠EQD,∴∠AQB=∠BQP=∠EQD=∠PQD,∵∠AQE=180°,∴∠AQB=∠BQP=∠EQD=∠PQD=45°,∴∠QBH=∠BQP=45°,∴BH=QH,∴BQBH,故答案為:.【點(diǎn)睛】本題考查了翻折變換,菱形的性質(zhì),全等三角形的判定和性質(zhì),直角三角形的性質(zhì)等知識,掌握折疊的性質(zhì)是解題的關(guān)鍵.2、【解析】【分析】設(shè)BF=x,則FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,從而得到關(guān)于x的方程,求解x即可.【詳解】解:設(shè)BF=x,則FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根據(jù)折疊的性質(zhì)可知AG=AB=4,所以GE=2﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(2﹣4)2+x2=(4﹣x)2+22,解得x=﹣2,∴CF=4-(﹣2),故答案為:6-2.【點(diǎn)睛】本題主要考查了正方形的性質(zhì)及翻轉(zhuǎn)折疊的性質(zhì),勾股定理,拓展一元一次方程,準(zhǔn)確運(yùn)用題目中的條件表示出EF列出方程式解題的關(guān)鍵.3、6【解析】【分析】過點(diǎn)D作DE⊥AB交y軸于點(diǎn)E,交BO于點(diǎn)P,得矩形ACPD,正方形OCPE,此時(shí)PC+PD的值最?。驹斀狻拷猓骸逜(6,0),B(6,6),∴OA=AB=6,∴∠B=∠COP=45°,如圖,過點(diǎn)D作DE⊥AB交y軸于點(diǎn)E,交BO于點(diǎn)P,∴∠PDA=∠DAC=∠PCA=90°,∴四邊形ACPD是矩形,∴AC=DP,PC=AD,同理可得四邊形OCPE是矩形,∵∠COP=45°,∴PC=OC,∴四邊形OCPE是正方形,∵BD=AC=1,∴DP=BD=1,∴PC=AD=5,∴PC+PD=6,此時(shí)PC+PD的值最小,為6.故答案為:6.【點(diǎn)睛】本題考查了矩形的判定與性質(zhì),正方形的判定以及垂線段最短問題.4、8【解析】【分析】證明四邊形ABDE是平行四邊形,得到DE=CD=,,過點(diǎn)E作EH⊥BF于H,證得CH=EH,利用勾股定理求出EH,再根據(jù)30度角的性質(zhì)求出EF.【詳解】解:∵四邊形ABCD是平行四邊形,∴,AB=CD,∵,∴四邊形ABDE是平行四邊形,∴DE=CD=,,過點(diǎn)E作EH⊥BF于H,∵,∴∠ECH=,∴CH=EH,∵,,∴CH=EH=4,∵∠EHF=90°,,∴EF=2EH=8,故答案為:8.【點(diǎn)睛】此題考查了平行四邊形的判定及性質(zhì),勾股定理,直角三角形30度角的性質(zhì),熟記各知識點(diǎn)并應(yīng)用解決問題是解題的關(guān)鍵.5、【解析】【分析】設(shè)則再利用矩形的性質(zhì)建立方程求解從而可得答案.【詳解】解:四邊形BHDG為菱形,設(shè)AD=3AB,設(shè)則矩形ABCD,解得:故答案為:【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,矩形的性質(zhì),菱形的性質(zhì),利用圖形的性質(zhì)建立方程確定之間的關(guān)系是解本題的關(guān)鍵.三、解答題1、見解析【分析】連接,根據(jù)平行四邊形的性質(zhì)可得AO=OC,DO=OB,由M是AO的中點(diǎn),N是CO的中點(diǎn),進(jìn)而可得MO=ON,進(jìn)而即可證明四邊形是平行四邊形,即可得證.【詳解】如圖,連接,

∵四邊形ABCD為平行四邊形,∴AO=OC,DO=OB.∵M(jìn)為AO的中點(diǎn),N為CO的中點(diǎn),即∴MO=ON.四邊形是平行四邊形,∴BM∥DN,BM=DN.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)與判定,掌握平行四邊形的性質(zhì)與判定是解題的關(guān)鍵.2、(1)見解析;(2)見解析【分析】(1)作BD的垂直平分線,再截取即可;(2)先證明三角形全等,然后根據(jù)全等三角形的性質(zhì)可得:,依據(jù)菱形的判定定理即可證明.【詳解】(1)解:如圖所示,作BD的垂直平分線,再截取,點(diǎn)即為所求.(2)證明:如圖所示:∵,,∴,在與中,,∴;∴,又∵,∴四邊形是菱形.【點(diǎn)睛】本題考查了尺規(guī)作圖和菱形的證明,解題關(guān)鍵是熟練運(yùn)用尺規(guī)作圖方法和菱形的判定定理進(jìn)行作圖與證明.3、見解析【分析】根據(jù)菱形的性質(zhì),可得AD=DC,AB=BC,∠A=∠C.從而得到△AED≌△CFD.從而得到AE=CF.即可求證.【詳解】證明:∵四邊形ABCD是菱形,∴AD=DC,AB=BC,∠A=∠C.∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90°.∴△AED≌△CFD(AAS).∴AE=CF.∴AB﹣AE=BC﹣CF.即:BE=BF.【點(diǎn)睛】本題主要考查了菱形的性質(zhì),全等三角形的判定和性質(zhì),熟練掌握菱形的對角相等,對邊相等是解題的關(guān)鍵.4、(1)見解析;(2)30【分析】(1)根據(jù)折疊的性質(zhì)以及矩形的性質(zhì)可得結(jié)果;(2)設(shè)DE=x,則BE=x,AE=18﹣x,在Rt△ABE中,由勾股定理列方程求解.【詳解】解:(1)△BDE是等腰三角形.由折疊可知,∠CBD=∠EBD,∵AD∥BC,∴∠CBD=∠EDB,∴∠EBD=∠EDB,∴BE=DE,即△BDE是等腰三角形;(2)設(shè)DE=x,則BE=x,AE=18﹣x,在Rt△ABE中,由勾股定理得:AB2+AE2=BE2即62+(18﹣x)2=x2,解得:x=10,所以S△BDE=DE×AB=×10×6=30.【點(diǎn)睛】本題考查了等腰三角形的判定,矩形與折疊的性質(zhì),勾股定理等知識點(diǎn),熟練掌握相關(guān)的性質(zhì)以及定理是解本題的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論