綜合解析云南省宣威市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合測(cè)評(píng)練習(xí)題_第1頁(yè)
綜合解析云南省宣威市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合測(cè)評(píng)練習(xí)題_第2頁(yè)
綜合解析云南省宣威市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合測(cè)評(píng)練習(xí)題_第3頁(yè)
綜合解析云南省宣威市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合測(cè)評(píng)練習(xí)題_第4頁(yè)
綜合解析云南省宣威市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合測(cè)評(píng)練習(xí)題_第5頁(yè)
已閱讀5頁(yè),還剩25頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

云南省宣威市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合測(cè)評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,點(diǎn),在直線的同側(cè),到的距離,到的距離,已知,是直線上的一個(gè)動(dòng)點(diǎn),記的最小值為,的最大值為,則的值為(

)A.160 B.150 C.140 D.1302、為⊙外一點(diǎn),與⊙相切于點(diǎn),,,則的長(zhǎng)為(

)A. B. C. D.3、如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底墻到左墻角的距離為1.5m,頂端距離地面2m,如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),頂端距離地面0.7m,那么小巷的寬度為(

)A.3.2m B.3.5m C.3.9m D.4m4、△ABC的三邊長(zhǎng)a,b,c滿足+(b﹣12)2+|c﹣13|=0,則△ABC的面積是(

)A.65 B.60 C.30 D.265、在△ABC中,,那么△ABC是(

)A.等腰三角形 B.鈍角三角形 C.直角三角形 D.等腰直角三角形6、如圖,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中點(diǎn),直線l經(jīng)過(guò)點(diǎn)D,AE⊥l,BF⊥l,垂足分別為E,F(xiàn),則AE+BF的最大值為()A. B.2 C.2 D.37、勾股定理是人類最偉大的科學(xué)發(fā)現(xiàn)之一,在我國(guó)古算書《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出(

)A.直角三角形的面積B.最大正方形的面積C.較小兩個(gè)正方形重疊部分的面積D.最大正方形與直角三角形的面積和第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,一架長(zhǎng)5米的梯子A1B1斜靠在墻A1C上,B1到墻底端C的距離為3米,此時(shí)梯子的高度達(dá)不到工作要求,因此把梯子的B1端向墻的方向移動(dòng)了1.6米到B處,此時(shí)梯子的高度達(dá)到工作要求,那么梯子的A1端向上移動(dòng)了_____米.2、我國(guó)古代有這樣一道數(shù)學(xué)問(wèn)題:“枯木一根直立地上,高二丈,周三尺,有葛藤自根纏繞而上,五周而達(dá)其頂,問(wèn)葛藤之長(zhǎng)幾何?”題意是:如圖所示,把枯木看作一個(gè)圓柱體,因一丈是十尺,則該圓柱的高為20尺,底面周長(zhǎng)為3尺,有葛藤自點(diǎn)A處纏繞而上,繞五周后其末端恰好到達(dá)點(diǎn)B處,則問(wèn)題中葛藤的最短長(zhǎng)度是_______尺.

3、已知,在中,,,,則的面積為__.4、我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中的一個(gè)問(wèn)題:一根竹子高1丈(1丈=10尺),折斷后頂端落在離竹子底端3尺處,問(wèn)折斷處離地面的高度為多少尺?如圖,設(shè)折斷處離地面的高度為x尺,根據(jù)題意,可列出關(guān)于x方程為:__________.5、如圖,在正方形網(wǎng)格中,點(diǎn)A,B,C,D,E是格點(diǎn),則∠ABD+∠CBE的度數(shù)為_____________.

6、如圖,在四邊形ABCD中,,,,,,那么四邊形ABCD的面積是___________.7、如圖,在長(zhǎng)方形ABCD中,AB=8,AD=10,點(diǎn)E為BC上一點(diǎn),將△ABE沿AE折疊,點(diǎn)B恰好落在線段DE上的點(diǎn)F處,則BE的長(zhǎng)為______.8、如圖,分別以此直角三角形的三邊為直徑在三角形的外部畫半圓,,,則_________.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,將RtABC紙片沿AD折疊,使直角頂點(diǎn)C與AB邊上的點(diǎn)E重合,若AB=10cm,AC=6cm,求線段BD的長(zhǎng).2、如圖,某海岸線MN的方向?yàn)楸逼珫|75°,甲,乙兩船分別向海島C運(yùn)送物資,甲船從港口A處沿北偏東45°方向航行,乙船從港口B處沿北偏東30°方向航行,已知港口B到海島C的距離為30海里,求港口A到海島C的距離.3、如圖,有一架秋千,當(dāng)他靜止時(shí),踏板離地的垂直高度,將他往前推送(水平距離)時(shí),秋千的踏板離地的垂直高度,秋千的繩索始終拉得很直,求繩索的長(zhǎng)度.4、臺(tái)風(fēng)是一種自然災(zāi)害,它以臺(tái)風(fēng)中心為圓心在周圍上百千米的范圍內(nèi)形成極端氣候,有極強(qiáng)的破壞力,如圖,有一臺(tái)風(fēng)中心沿東西方向由行駛向,已知點(diǎn)為海港,并且點(diǎn)與直線上的兩點(diǎn),的距離分別為,,又,以臺(tái)風(fēng)中心為圓心周圍250km以內(nèi)為受影響區(qū)域.(1)求的度數(shù);(2)海港受臺(tái)風(fēng)影響嗎?為什么?5、點(diǎn)P到y(tǒng)軸的距離與它到點(diǎn)A(-8,2)的距離都等于13,求點(diǎn)P的坐標(biāo)。6、如圖,中,,,是邊上一點(diǎn),且,若.求的長(zhǎng).7、已知:在中,點(diǎn)在直線上,點(diǎn)在同一條直線上,且,【問(wèn)題初探】(1)如圖1,若平分,求證:.請(qǐng)依據(jù)以下的簡(jiǎn)易思維框圖,寫出完整的證明過(guò)程.【變式再探】(2)如圖2,若平分的外角,交的延長(zhǎng)線于點(diǎn),問(wèn):和的數(shù)量關(guān)系發(fā)生改變了嗎?若改變,請(qǐng)寫出正確的結(jié)論,并證明;若不改變,請(qǐng)說(shuō)明理由.【拓展運(yùn)用】(3)如圖3,在的條件下.若,求的長(zhǎng)度.-參考答案-一、單選題1、A【解析】【分析】作點(diǎn)A關(guān)于直線MN的對(duì)稱點(diǎn),連接交直線MN于點(diǎn)P,則點(diǎn)P即為所求點(diǎn),過(guò)點(diǎn)作直線,在根據(jù)勾股定理求出線段的長(zhǎng),即為PA+PB的最小值,延長(zhǎng)AB交MN于點(diǎn),此時(shí),由三角形三邊關(guān)系可知,故當(dāng)點(diǎn)P運(yùn)動(dòng)到時(shí)最大,過(guò)點(diǎn)B作由勾股定理求出AB的長(zhǎng)就是的最大值,代入計(jì)算即可得.【詳解】解:如圖所示,作點(diǎn)A關(guān)于直線MN的對(duì)稱點(diǎn),連接交直線MN于點(diǎn)P,則點(diǎn)P即為所求點(diǎn),過(guò)點(diǎn)作直線,∵,,,∴,,,在中,根據(jù)勾股定理得,∴,即PA+PB的最小值是;如圖所示,延長(zhǎng)AB交MN于點(diǎn),∵,,∴當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)時(shí),最大,過(guò)點(diǎn)B作,則,∴,在中,根據(jù)勾股定理得,,∴,即,∴,故選A.【考點(diǎn)】本題考查了最短線路問(wèn)題和勾股定理,解題的關(guān)鍵是熟知兩點(diǎn)之間線段最短及三角形的三邊關(guān)系.2、A【解析】【分析】連接OT,根據(jù)切線的性質(zhì)求出求,結(jié)合利用含的直角三角形的性質(zhì)求出OT,再利用勾股定理求得PT的長(zhǎng)度即可.【詳解】解:連接OT,如下圖.∵與⊙相切于點(diǎn),∴.∵,,∴,∴.故選:A.【考點(diǎn)】本題考查了切線的性質(zhì),含的直角三角形的性質(zhì),勾股定理,求出OT的長(zhǎng)度是解答關(guān)鍵.3、C【解析】【分析】如圖,在Rt△ACB中,先根據(jù)勾股定理求出AB,然后在Rt△A′BD中根據(jù)勾股定理求出BD,進(jìn)而可得答案.【詳解】解:如圖,在Rt△ACB中,∵∠ACB=90°,BC=1.5米,AC=2米,∴AB2=1.52+22=6.25,∴AB=2.5米,在Rt△A′BD中,∵∠A′DB=90°,A′D=0.7米,BD2+A′D2=A′B2,∴BD2+0.72=6.25,∴BD2=5.76,∵BD>0,∴BD=2.4米,∴CD=BC+BD=1.5+2.4=3.9米.故選:C.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,正確理解題意、熟練掌握勾股定理是解題的關(guān)鍵.4、C【解析】【分析】首先根據(jù)非負(fù)數(shù)的性質(zhì)可得a-5=0,b-12=0,c-13=0,進(jìn)而可得a、b、c的值,再利用勾股定理逆定理證明△ABC是直角三角形,最后由直角三角形面積公式求解即可.【詳解】解:∵+(b-12)2+|c-13|=0,∴a-5=0,b-12=0,c-13=0,∴a=5,b=12,c=13,∵52+122=132,∴△ABC是直角三角形,∴S△ABC==30.故選:C.【考點(diǎn)】此題主要考查了非負(fù)數(shù)的性質(zhì),以及勾股定理逆定理,熟練掌握如果三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形就是直角三角形,利用非負(fù)數(shù)性質(zhì)求出a、b、c的值是解題的關(guān)鍵.5、D【解析】【分析】根據(jù)等腰三角形的判定和勾股定理逆定理得出三角形的形狀即可.【詳解】∵a:b:c=1:1:,∴三角形ABC是等腰三角形.設(shè)三邊長(zhǎng)為a,a,∵,∴三角形ABC是直角三角形.綜上所述:△ABC是等腰直角三角形.故選D.【考點(diǎn)】本題考查了等腰三角形的判定和勾股定理逆定理.此題關(guān)鍵是利用勾股定理的逆定理解答.6、A【解析】【分析】把要求的最大值的兩條線段經(jīng)過(guò)平移后形成一條線段,然后再根據(jù)垂線段最短來(lái)進(jìn)行計(jì)算即可.【詳解】解:如圖,過(guò)點(diǎn)C作CK⊥l于點(diǎn)K,過(guò)點(diǎn)A作AH⊥BC于點(diǎn)H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC=,∵點(diǎn)D為BC中點(diǎn),∴BD=CD,在△BFD與△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延長(zhǎng)AE,過(guò)點(diǎn)C作CN⊥AE于點(diǎn)N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,當(dāng)直線l⊥AC時(shí),最大值為,綜上所述,AE+BF的最大值為.故選:A.【考點(diǎn)】本題主要考查了全等三角形的判定定理和性質(zhì)定理及平移的性質(zhì),構(gòu)建全等三角形是解答此題的關(guān)鍵.7、C【解析】【分析】根據(jù)勾股定理得到c2=a2+b2,根據(jù)正方形的面積公式、長(zhǎng)方形的面積公式計(jì)算即可.【詳解】設(shè)直角三角形的斜邊長(zhǎng)為c,較長(zhǎng)直角邊為b,較短直角邊為a,由勾股定理得,c2=a2+b2,陰影部分的面積=c2-b2-a(c-b)=a2-ac+ab=a(a+b-c),較小兩個(gè)正方形重疊部分的長(zhǎng)=a-(c-b),寬=a,則較小兩個(gè)正方形重疊部分底面積=a(a+b-c),∴知道圖中陰影部分的面積,則一定能求出較小兩個(gè)正方形重疊部分的面積,故選C.【考點(diǎn)】本題考查的是勾股定理,如果直角三角形的兩條直角邊長(zhǎng)分別是a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.二、填空題1、0.8【解析】【分析】梯子的長(zhǎng)是不變的,只要利用勾股定理解出梯子滑動(dòng)前和滑動(dòng)后的所構(gòu)成的兩直角三角形,分別得出AO,A1O的長(zhǎng)即可.【詳解】解:在Rt△ABO中,根據(jù)勾股定理知,A1O==4(m),在Rt△ABO中,由題意可得:BO=1.4(m),根據(jù)勾股定理知,AO==4.8(m),所以AA1=AO-A1O=0.8(米).故答案為0.8.【考點(diǎn)】本題考查勾股定理的應(yīng)用,解題關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.2、25.【解析】【詳解】解:這種立體圖形求最短路徑問(wèn)題,可以展開成為平面內(nèi)的問(wèn)題解決,展開后可轉(zhuǎn)化下圖,所以是直角三角形求斜邊的問(wèn)題.根據(jù)勾股定理可求出葛藤長(zhǎng)為(尺).故答案為:25.3、2或14#14或2【解析】【分析】過(guò)點(diǎn)B作AC邊的高BD,Rt△ABD中,∠A=45°,AB=4,得BD=AD=4,在Rt△BDC中,BC=4,得CD==5,①△ABC是鈍角三角形時(shí),②△ABC是銳角三角形時(shí),分別求出AC的長(zhǎng),即可求解.【詳解】解:過(guò)點(diǎn)作邊的高,中,,,,在中,,,①是鈍角三角形時(shí),,;②是銳角三角形時(shí),,,故答案為:2或14.【考點(diǎn)】本題考查了勾股定理,三角形面積求法,解題關(guān)鍵是分類討論思想.4、【解析】【分析】設(shè)折斷處離地面的高度為x尺,根據(jù)勾股定理列出方程即可【詳解】解:設(shè)折斷處離地面的高度為x尺,根據(jù)題意可得:故答案為:【考點(diǎn)】本題考查了勾股定理的應(yīng)用,掌握勾股定理是解題的關(guān)鍵.5、45°【解析】【分析】取網(wǎng)格點(diǎn)M、N、F,連接AM、AN、BM、MF、BN,根據(jù)網(wǎng)格線可得到∠ABD+∠CBE=∠MAB,再根據(jù)勾股定理的逆定理證明△ABM是直角三角形,且AM=BM,即可得解.【詳解】取網(wǎng)格點(diǎn)M、N、F,連接AM、AN、BM、MF、BN,如圖,根據(jù)網(wǎng)格線可知NB=1=MF,AN=3,AF=2,由網(wǎng)格圖可知∠CBE=∠FAM,∠ABD=∠NAB,則∠ABD+∠CBE=∠MAB,在Rt△ANB中,有,同理可求得:,∵,∴△ABM是直角三角形,且AM=BM,∴∠MAB=45°,即:∠ABD+∠CBE=45°,故答案為:45°.【考點(diǎn)】本題考查了勾股定理即勾股定理的逆定理、等腰直角三角形等知識(shí),求得∠ABD+∠CBE=∠MAB是解答本題的關(guān)鍵.6、+24【解析】【分析】連結(jié)BD,可求出BD=6,再根據(jù)勾股定理逆定理,得出△BDC是直角三角形,兩個(gè)三角形面積相加即可.【詳解】解:連結(jié)BD,∵,∴,∵,,∴BD=6,∵BD2=36,CD2=64,BC2=100,BD2+CD2=BC2,∴∠BDC=90°,S△ABD=,S△BDC=,四邊形ABCD的面積是=S△ABD+S△BDC=+24故答案為:+24.【考點(diǎn)】本題考查勾股定理以及逆定理,三角形的面積等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考??碱}型.7、【解析】【分析】設(shè),則,由折疊的性質(zhì)可知,,在中利用勾股定理表示出,在中,利用勾股定理列方程求解.【詳解】解:設(shè),則,由折疊的性質(zhì)可知,,,.在中,,.在中,,即,解得.的長(zhǎng)為.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,折疊的性質(zhì),熟練掌握勾股定理是解題的關(guān)鍵.8、【解析】【分析】根據(jù)題意設(shè)直角三角形的三邊為,分別表示出,得出,進(jìn)而即可求解.【詳解】解:設(shè)直角三角形的三邊為,如圖,,,,,S1=18π,S3=50π,故答案為:.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,掌握勾股定理是解題的關(guān)鍵.三、解答題1、5【解析】【分析】利用勾股定理先求出的值,根據(jù)折疊的性質(zhì)可得出,,,設(shè),列方程求解即可.【詳解】解:由題意可知:,,則,,,設(shè),則,∴解方程得:因此,的長(zhǎng)為所以,【考點(diǎn)】本題考查的知識(shí)點(diǎn)是勾股定理的應(yīng)用,根據(jù)題意構(gòu)造直角三角形是解此題的關(guān)鍵.2、【解析】【分析】過(guò)點(diǎn)C作CD⊥AM垂足為D,設(shè)CD=x,根據(jù)直角三角形的性質(zhì)求可得AC=2x、BD=BC=x,再利用勾股定理可求得x,進(jìn)而求得AC的長(zhǎng).【詳解】解:過(guò)點(diǎn)C作CD⊥AM垂足為D,∴∠CAD=75°-45°=30°,∠CBD=75°-30°=30°,設(shè)CD=x∵在Rt△ACD中,∠CAD=75°-45°=30°∴AC=2x∵在Rt△BCD中,∠CBD=45°,BC=30∴BD=BC=x∴,解得x=∴AC=2x=.答:港口A到海島C的距離是海里.【考點(diǎn)】本題主要考查了直角三角形的性質(zhì)、勾股定理等知識(shí)點(diǎn),掌握直角三角形的邊角關(guān)系是正確解答的前提,作垂線構(gòu)造直角三角形是解決問(wèn)題的關(guān)鍵.3、【解析】【分析】設(shè)秋千的繩索長(zhǎng)為,則,,利用勾股定理得,再解方程即可得出答案.【詳解】解:設(shè)秋千的繩索長(zhǎng)為,則,,在中,,即,解得,答:繩索的長(zhǎng)度是.【考點(diǎn)】此題主要考查了勾股定理的應(yīng)用,關(guān)鍵是正確理解題意,表示出AC、AB的長(zhǎng),掌握直角三角形中兩直角邊的平方和等于斜邊的平方.4、(1)90°;(2)受臺(tái)風(fēng)影響,理由見解析【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,進(jìn)而得出∠ACB的度數(shù);(2)利用三角形面積得出CD的長(zhǎng),進(jìn)而得出海港C是否受臺(tái)風(fēng)影響.【詳解】解:(1)∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(2)海港C受臺(tái)風(fēng)影響,理由:過(guò)點(diǎn)C作CD⊥AB,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以臺(tái)風(fēng)中心為圓心周圍250km以內(nèi)為受影響區(qū)域,∴海港C受臺(tái)風(fēng)影響.【考點(diǎn)】本題考查的是勾股定理在實(shí)際生活中的運(yùn)用,解答此類題目的關(guān)鍵是構(gòu)造出直角三角形,再利用勾股定理解答.5、或.【解析】【分析】由P到y(tǒng)軸的距離

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論