豐城市2025屆中考數(shù)學全真模擬試題含解析_第1頁
豐城市2025屆中考數(shù)學全真模擬試題含解析_第2頁
豐城市2025屆中考數(shù)學全真模擬試題含解析_第3頁
豐城市2025屆中考數(shù)學全真模擬試題含解析_第4頁
豐城市2025屆中考數(shù)學全真模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

豐城市2025屆中考數(shù)學全真模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知二次函數(shù)y=ax2+bx+c的圖像經(jīng)過點(0,m)、(4、m)、(1,n),若n<m,則()A.a(chǎn)>0且4a+b=0 B.a(chǎn)<0且4a+b=0C.a(chǎn)>0且2a+b=0 D.a(chǎn)<0且2a+b=02.不透明的袋子中裝有形狀、大小、質地完全相同的6個球,其中4個黑球、2個白球,從袋子中一次摸出3個球,下列事件是不可能事件的是()A.摸出的是3個白球 B.摸出的是3個黑球C.摸出的是2個白球、1個黑球 D.摸出的是2個黑球、1個白球3.已知A、B兩地之間鐵路長為450千米,動車比火車每小時多行駛50千米,從A市到B市乘動車比乘火車少用40分鐘,設動車速度為每小時x千米,則可列方程為()A. B.C. D.4.如圖是由四個相同的小正方形組成的立體圖形,它的俯視圖為()A. B. C. D.5.下列函數(shù)中,二次函數(shù)是()A.y=﹣4x+5 B.y=x(2x﹣3)C.y=(x+4)2﹣x2 D.y=6.下列運算結果正確的是()A.3a﹣a=2B.(a﹣b)2=a2﹣b2C.a(chǎn)(a+b)=a2+bD.6ab2÷2ab=3b7.如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AB=c,∠A=α,則CD長為()A.c?sin2α B.c?cos2α C.c?sinα?tanα D.c?sinα?cosα8.如圖,在平行四邊形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④ B.②和③ C.③和④ D.②和④9.2018年1月,“墨子號”量子衛(wèi)星實現(xiàn)了距離達7600千米的洲際量子密鑰分發(fā),這標志著“墨子號”具備了洲際量子保密通信的能力.數(shù)字7600用科學記數(shù)法表示為()A.0.76×104 B.7.6×103 C.7.6×104 D.76×10210.為確保信息安全,信息需加密傳輸,發(fā)送方將明文加密后傳輸給接收方,接收方收到密文后解密還原為明文,已知某種加密規(guī)則為,明文a,b對應的密文為a+2b,2a-b,例如:明文1,2對應的密文是5,0,當接收方收到的密文是1,7時,解密得到的明文是()A.3,-1 B.1,-3 C.-3,1 D.-1,3二、填空題(共7小題,每小題3分,滿分21分)11.如圖,Rt△ABC的直角邊BC在x軸負半軸上,斜邊AC上的中線BD的反向延長線交y軸正半軸于點E,雙曲線y=(x<0)的圖象經(jīng)過點A,S△BEC=8,則k=_____.12.如圖,在直角三角形ABC中,∠ACB=90°,CA=4,點P是半圓弧AC的中點,連接BP,線段即把圖形APCB(指半圓和三角形ABC組成的圖形)分成兩部分,則這兩部分面積之差的絕對值是_____.13.如圖所示,在平面直角坐標系中,已知反比例函數(shù)y=(x>0)的圖象和菱形OABC,且OB=4,tan∠BOC=,若將菱形向右平移,菱形的兩個頂點B、C恰好同時落在反比例函數(shù)的圖象上,則反比例函數(shù)的解析式是______________.14.計算:cos245°-tan30°sin60°=______.15.如圖,A、B、C是⊙O上的三點,若∠C=30°,OA=3,則弧AB的長為______.(結果保留π)16.點A(1,2),B(n,2)都在拋物線y=x2﹣4x+m上,則n=_____.17.如圖,AB為半圓的直徑,且AB=2,半圓繞點B順時針旋轉40°,點A旋轉到A′的位置,則圖中陰影部分的面積為_____(結果保留π).三、解答題(共7小題,滿分69分)18.(10分)如圖,拋物線y=-x2+bx+c的頂點為C,對稱軸為直線x=1,且經(jīng)過點A(3,-1),與y軸交于點B.求拋物線的解析式;判斷△ABC的形狀,并說明理由;經(jīng)過點A的直線交拋物線于點P,交x軸于點Q,若S△OPA=2S△OQA,試求出點P的坐標.19.(5分)(1)計算:(1﹣)0﹣|﹣2|+;(2)如圖,在等邊三角形ABC中,點D,E分別是邊BC,AC的中點,過點E作EF⊥DE,交BC的延長線于點F,求∠F的度數(shù).20.(8分)如圖,在矩形ABCD中,AB=3,BC=4,將矩形ABCD繞點C按順時針方向旋轉α角,得到矩形A'B'C'D',B'C與AD交于點E,AD的延長線與A'D'交于點F.(1)如圖①,當α=60°時,連接DD',求DD'和A'F的長;(2)如圖②,當矩形A'B'CD'的頂點A'落在CD的延長線上時,求EF的長;(3)如圖③,當AE=EF時,連接AC,CF,求AC?CF的值.21.(10分)如圖,已知正方形ABCD的邊長為4,點P是AB邊上的一個動點,連接CP,過點P作PC的垂線交AD于點E,以PE為邊作正方形PEFG,頂點G在線段PC上,對角線EG、PF相交于點O.(1)若AP=1,則AE=;(2)①求證:點O一定在△APE的外接圓上;②當點P從點A運動到點B時,點O也隨之運動,求點O經(jīng)過的路徑長;(3)在點P從點A到點B的運動過程中,△APE的外接圓的圓心也隨之運動,求該圓心到AB邊的距離的最大值.22.(10分)如圖1,矩形ABCD中,E是AD的中點,以點E直角頂點的直角三角形EFG的兩邊EF,EG分別過點B,C,∠F=30°.(1)求證:BE=CE(2)將△EFG繞點E按順時針方向旋轉,當旋轉到EF與AD重合時停止轉動.若EF,EG分別與AB,BC相交于點M,N.(如圖2)①求證:△BEM≌△CEN;②若AB=2,求△BMN面積的最大值;③當旋轉停止時,點B恰好在FG上(如圖3),求sin∠EBG的值.23.(12分)如圖所示,在坡角為30°的山坡上有一豎立的旗桿AB,其正前方矗立一墻,當陽光與水平線成45°角時,測得旗桿AB落在坡上的影子BD的長為8米,落在墻上的影子CD的長為6米,求旗桿AB的高(結果保留根號).24.(14分)“校園安全”受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為度;(2)請補全條形統(tǒng)計圖;(3)若該中學共有學生900人,請根據(jù)上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數(shù).

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

由圖像經(jīng)過點(0,m)、(4、m)可知對稱軸為x=2,由n<m知x=1時,y的值小于x=0時y的值,根據(jù)拋物線的對稱性可知開口方向,即可知道a的取值.【詳解】∵圖像經(jīng)過點(0,m)、(4、m)∴對稱軸為x=2,則,∴4a+b=0∵圖像經(jīng)過點(1,n),且n<m∴拋物線的開口方向向上,∴a>0,故選A.此題主要考查拋物線的圖像,解題的關鍵是熟知拋物線的對稱性.2、A【解析】由題意可知,不透明的袋子中總共有2個白球,從袋子中一次摸出3個球都是白球是不可能事件,故選B.3、D【解析】解:設動車速度為每小時x千米,則可列方程為:﹣=.故選D.4、B【解析】

根據(jù)俯視圖是從上往下看的圖形解答即可.【詳解】從上往下看到的圖形是:.故選B.本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.5、B【解析】A.y=-4x+5是一次函數(shù),故此選項錯誤;B.

y=x(2x-3)=2x2-3x,是二次函數(shù),故此選項正確;C.

y=(x+4)2?x2=8x+16,為一次函數(shù),故此選項錯誤;D.

y=是組合函數(shù),故此選項錯誤.故選B.6、D【解析】

各項計算得到結果,即可作出判斷.【詳解】解:A、原式=2a,不符合題意;

B、原式=a2-2ab+b2,不符合題意;

C、原式=a2+ab,不符合題意;D、原式=3b,符合題意;

故選D此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.7、D【解析】

根據(jù)銳角三角函數(shù)的定義可得結論.【詳解】在Rt△ABC中,∠ACB=90°,AB=c,∠A=a,根據(jù)銳角三角函數(shù)的定義可得sinα=,∴BC=c?sinα,∵∠A+∠B=90°,∠DCB+∠B=90°,∴∠DCB=∠A=α在Rt△DCB中,∠CDB=90°,∴cos∠DCB=,∴CD=BC?cosα=c?sinα?cosα,故選D.8、D【解析】∵四邊形ABCD是平行四邊形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②與④不一定成立,∵當四邊形是菱形時,②和④成立.故選D.9、B【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:7600=7.6×103,故選B.此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.10、A【解析】

根據(jù)題意可得方程組,再解方程組即可.【詳解】由題意得:,解得:,故選A.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

∵BD是Rt△ABC斜邊上的中線,∴BD=CD=AD,∴∠DBC=∠ACB,又∠DBC=∠OBE,∠BOE=∠ABC=90°,∴△ABC∽△EOB,∴∴AB?OB=BC?OE,∵S△BEC=×BC?OE=8,∴AB?OB=1,∴k=xy=AB?OB=1.12、4【解析】

連接把兩部分的面積均可轉化為規(guī)則圖形的面積,不難發(fā)現(xiàn)兩部分面積之差的絕對值即為的面積的2倍.【詳解】解:連接OP、OB,∵圖形BAP的面積=△AOB的面積+△BOP的面積+扇形OAP的面積,圖形BCP的面積=△BOC的面積+扇形OCP的面積?△BOP的面積,又∵點P是半圓弧AC的中點,OA=OC,∴扇形OAP的面積=扇形OCP的面積,△AOB的面積=△BOC的面積,∴兩部分面積之差的絕對值是點睛:考查扇形面積和三角形的面積,把不規(guī)則圖形的面積轉化為規(guī)則圖形的面積是解題的關鍵.13、【解析】解:連接AC,交y軸于D.∵四邊形形OABC是菱形,∴AC⊥OB,OD=BD,AD=CD.∵OB=4,tan∠BOC=,∴OD=2,CD=1,∴A(﹣1,2),B(0,4),C(1,2).設菱形平移后B的坐標是(x,4),C的坐標是(1+x,2).∵B、C落在反比例函數(shù)的圖象上,∴k=4x=2(1+x),解得:x=1,即菱形平移后B的坐標是(1,4),代入反比例函數(shù)的解析式得:k=1×4=4,即B、C落在反比例函數(shù)的圖象上,菱形的平移距離是1,反比例函數(shù)的解析式是y=.故答案為y=.點睛:本題考查了菱形的性質,用待定系數(shù)法求反比例函數(shù)的解析式,平移的性質的應用,主要考查學生的計算能力.14、0【解析】

直接利用特殊角的三角函數(shù)值代入進而得出答案.【詳解】=.故答案為0.此題主要考查了特殊角的三角函數(shù)值,正確記憶相關數(shù)據(jù)是解題關鍵.15、π【解析】∵∠C=30°,∴∠AOB=60°,∴.即的長為.16、1【解析】

根據(jù)題意可以求得m的值和n的值,由A的坐標,可確定B的坐標,進而可以得到n的值.【詳解】:∵點A(1,2),B(n,2)都在拋物線y=x2-4x+m上,

∴2=1-4+m2=n2-4n+m,

解得本題考查了二次函數(shù)圖象上點的坐標特征,解題的關鍵是明確題意,利用二次函數(shù)的性質求解.17、【解析】【分析】根據(jù)題意可得出陰影部分的面積等于扇形ABA′的面積加上半圓面積再減去半圓面積.【詳解】∵S陰影=S扇形ABA′+S半圓-S半圓=S扇形ABA′==,故答案為.【點睛】本題考查了扇形面積的計算以及旋轉的性質,熟記扇形面積公式且能準確識圖是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)y=-x2+2x+2;(2)詳見解析;(3)點P的坐標為(1+,1)、(1-,1)、(1+,-3)或(1-,-3).【解析】

(1)根據(jù)題意得出方程組,求出b、c的值,即可求出答案;(2)求出B、C的坐標,根據(jù)點的坐標求出AB、BC、AC的值,根據(jù)勾股定理的逆定理求出即可;(3)分為兩種情況,畫出圖形,根據(jù)相似三角形的判定和性質求出PE的長,即可得出答案.【詳解】解:(1)由題意得:,解得:,∴拋物線的解析式為y=-x2+2x+2;(2)∵由y=-x2+2x+2得:當x=0時,y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴AB=3,BC=,AC=2,∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如圖,當點Q在線段AP上時,過點P作PE⊥x軸于點E,AD⊥x軸于點D∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴==1,∴PE=AD=1∵由-x2+2x+2=1得:x=1,∴P(1+,1)或(1-,1),②如圖,當點Q在PA延長線上時,過點P作PE⊥x軸于點E,AD⊥x軸于點D∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQE∽△AQD,∴==3,∴PE=3AD=3∵由-x2+2x+2=-3得:x=1±,∴P(1+,-3),或(1-,-3),綜上可知:點P的坐標為(1+,1)、(1-,1)、(1+,-3)或(1-,-3).本題考查了二次函數(shù)的圖象和性質,用待定系數(shù)法求二次函數(shù)的解析式,相似三角形的性質和判定等知識點,能求出符合的所有情況是解此題的關鍵.19、(1)﹣1+3;(2)30°.【解析】

(1)根據(jù)零指數(shù)冪、絕對值、二次根式的性質求出每一部分的值,代入求出即可;(2)根據(jù)平行線的性質可得∠EDC=∠B=,根據(jù)三角形內角和定理即可求解;【詳解】解:(1)原式=1﹣2+3=﹣1+3;(2)∵△ABC是等邊三角形,∴∠B=60°,∵點D,E分別是邊BC,AC的中點,∴DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°.(1)主要考查零指數(shù)冪、絕對值、二次根式的性質;(2)考查平行線的性質和三角形內角和定理.20、(1)DD′=1,A′F=4﹣;(2);(1).【解析】

(1)①如圖①中,∵矩形ABCD繞點C按順時針方向旋轉α角,得到矩形A'B'C'D',只要證明△CDD′是等邊三角形即可解決問題;②如圖①中,連接CF,在Rt△CD′F中,求出FD′即可解決問題;(2)由△A′DF∽△A′D′C,可推出DF的長,同理可得△CDE∽△CB′A′,可求出DE的長,即可解決問題;(1)如圖③中,作FG⊥CB′于G,由S△ACF=?AC?CF=?AF?CD,把問題轉化為求AF?CD,只要證明∠ACF=90°,證明△CAD∽△FAC,即可解決問題;【詳解】解:(1)①如圖①中,∵矩形ABCD繞點C按順時針方向旋轉α角,得到矩形A'B'C'D',∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=1∠A′D′C=∠ADC=90°.∵α=60°,∴∠DCD′=60°,∴△CDD′是等邊三角形,∴DD′=CD=1.②如圖①中,連接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,∴△CDF≌△CD′F,∴∠DCF=∠D′CF=∠DCD′=10°.在Rt△CD′F中,∵tan∠D′CF=,∴D′F=,∴A′F=A′D′﹣D′F=4﹣.(2)如圖②中,在Rt△A′CD′中,∵∠D′=90°,∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2.∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,∴△A′DF∽△A′D′C,∴,∴,∴DF=.同理可得△CDE∽△CB′A′,∴,∴,∴ED=,∴EF=ED+DF=.(1)如圖③中,作FG⊥CB′于G.∵四邊形A′B′CD′是矩形,∴GF=CD′=CD=1.∵S△CEF=?EF?DC=?CE?FG,∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°.∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴,∴AC2=AD?AF,∴AF=.∵S△ACF=?AC?CF=?AF?CD,∴AC?CF=AF?CD=.21、(1)34;(2)①證明見解析;②22;(3)【解析】試題分析:(1)由正方形的性質得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余關系證出∠AEP=∠PBC,得出△APE∽△BCP,得出對應邊成比例即可求出AE的長;(2)①A、P、O、E四點共圓,即可得出結論;②連接OA、AC,由勾股定理求出AC=42,由圓周角定理得出∠OAP=∠OEP=45°,周長點O在AC上,當P運動到點B時,O為AC(3)設△APE的外接圓的圓心為M,作MN⊥AB于N,由三角形中位線定理得出MN=12AE,設AP=x,則BP=4﹣x,由相似三角形的對應邊成比例求出AE的表達式,由二次函數(shù)的最大值求出AE的最大值為1,得出MN的最大值=1試題解析:(1)∵四邊形ABCD、四邊形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠PBC,∴△APE∽△BCP,∴AEBP=APBC,即AE4-1故答案為:34(2)①∵PF⊥EG,∴∠EOF=90°,∴∠EOF+∠A=180°,∴A、P、O、E四點共圓,∴點O一定在△APE的外接圓上;②連接OA、AC,如圖1所示:∵四邊形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC=42+4∵A、P、O、E四點共圓,∴∠OAP=∠OEP=45°,∴點O在AC上,當P運動到點B時,O為AC的中點,OA=12AC=2即點O經(jīng)過的路徑長為22(3)設△APE的外接圓的圓心為M,作MN⊥AB于N,如圖2所示:則MN∥AE,∵ME=MP,∴AN=PN,∴MN=12AE設AP=x,則BP=4﹣x,由(1)得:△APE∽△BCP,∴AEBP=APBC,即AE4-x=x∴x=2時,AE的最大值為1,此時MN的值最大=12×1=1即△APE的圓心到AB邊的距離的最大值為12【點睛】本題考查圓、二次函數(shù)的最值等,正確地添加輔助線,根據(jù)已知證明△APE∽△BCP是解題的關鍵.22、(1)詳見解析;(1)①詳見解析;②1;③.【解析】

(1)只要證明△BAE≌△CDE即可;(1)①利用(1)可知△EBC是等腰直角三角形,根據(jù)ASA即可證明;②構建二次函數(shù),利用二次函數(shù)的性質即可解決問題;③如圖3中,作EH⊥BG于H.設NG=m,則BG=1m,BN=EN=m,EB=m.利用面積法求出EH,根據(jù)三角函數(shù)的定義即可解決問題.【詳解】(1)證明:如圖1中,∵四邊形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中點,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(1)①解:如圖1中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,設BM=CN=x,則BN=4-x,∴S△BMN=?x(4-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論