中考數(shù)學總復習《 圓》練習題及參考答案詳解(模擬題)_第1頁
中考數(shù)學總復習《 圓》練習題及參考答案詳解(模擬題)_第2頁
中考數(shù)學總復習《 圓》練習題及參考答案詳解(模擬題)_第3頁
中考數(shù)學總復習《 圓》練習題及參考答案詳解(模擬題)_第4頁
中考數(shù)學總復習《 圓》練習題及參考答案詳解(模擬題)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

中考數(shù)學總復習《圓》練習題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,⊙O的半徑為5cm,直線l到點O的距離OM=3cm,點A在l上,AM=3.8cm,則點A與⊙O的位置關系是(

)A.在⊙O內(nèi) B.在⊙O上 C.在⊙O外 D.以上都有可能2、如圖,在中,,,,以點為圓心,為半徑的圓與所在直線的位置關系是(

)A.相交 B.相離 C.相切 D.無法判斷3、如圖,⊙O的直徑垂直于弦,垂足為.若,,則的長是(

)A. B. C. D.4、如圖,破殘的輪子上,弓形的弦AB為4m,高CD為1m,則這個輪子的半徑長為()A.m B.m C.5m D.m5、如圖,已知中,,,,如果以點為圓心的圓與斜邊有公共點,那么⊙的半徑的取值范圍是(

)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在四邊形中,.若,則的內(nèi)切圓面積________(結(jié)果保留).2、如圖,△ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,I是△ABC的內(nèi)心,則∠BIA的度數(shù)是_______°.3、如圖,直線y=﹣x+6與x軸、y軸分別交于A、B兩點,點P是以C(﹣1,0)為圓心,1為半徑的圓上一點,連接PA,PB,則△PAB面積的最大值為_____.4、如圖,AB是⊙O的直徑,點C,D,E都在⊙O上,∠1=55°,則∠2=_____°.5、如圖,⊙O的直徑AB=4,P為⊙O上的動點,連結(jié)AP,Q為AP的中點,若點P在圓上運動一周,則點Q經(jīng)過的路徑長是______.三、解答題(5小題,每小題10分,共計50分)1、如圖,在△ABC中,AB=AC,∠BAC與∠ABC的角平分線相交于點E,AE的延長線交△ABC的外接圓于點D,連接BD.(1)求證:∠BAD=∠DBC;(2)證明:點B、E、C在以點D為圓心的同一個圓上;(3)若AB=5,BC=8,求△ABC內(nèi)心與外心之間的距離.2、在平面直角坐標系中,對于點,給出如下定義:當點滿足時,稱點Q是點P的等和點.已知點.(1)在,,中,點P的等和點有______;(2)點A在直線上,若點P的等和點也是點A的等和點,求點A的坐標;(3)已知點和線段MN,對于所有滿足的點C,線段MN上總存在線段PC上每個點的等和點.若MN的最小值為5,直接寫出b的取值范圍.3、如圖,四邊形ABCD內(nèi)接于⊙O,AB為⊙O的直徑,過點C作CE⊥AD交AD的延長線于點E,延長EC,AB交于點F,∠ECD=∠BCF.(1)求證:CE為⊙O的切線;(2)若DE=1,CD=3,求⊙O的半徑.4、如圖,已知在⊙O中,直徑MN=10,正方形ABCD的四個頂點分別在⊙O及半徑OM、OP上,并且∠POM=45°,求正方形的邊長.5、如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,點O在AB上,以點O為圓心,OB為半徑的圓經(jīng)過點D,交BC于點E(1)求證:AC是⊙O的切線;(2)若OB=2,CD=,求圖中陰影部分的面積(結(jié)果保留).-參考答案-一、單選題1、A【解析】【詳解】如圖,連接OA,則在直角△OMA中,根據(jù)勾股定理得到OA=.∴點A與⊙O的位置關系是:點A在⊙O內(nèi).故選A.2、A【解析】【分析】過點C作CD⊥AB于點D,由題意易得AB=5,然后可得,進而根據(jù)直線與圓的位置關系可求解.【詳解】解:過點C作CD⊥AB于點D,如圖所示:∵,,,∴,根據(jù)等積法可得,∴,∵以點為圓心,為半徑的圓,∴該圓的半徑為,∵,∴圓與AB所在的直線的位置關系為相交,故選A.【考點】本題主要考查直線與圓的位置關系,熟練掌握直線與圓的位置關系是解題的關鍵.3、C【解析】【分析】根據(jù)直角三角形的性質(zhì)可求出CE=1,再根據(jù)垂徑定理可求出CD.【詳解】解:∵⊙O的直徑垂直于弦,∴∵,,∴CE=1∴CD=2.故選:C.【考點】本題考查了直角三角形的性質(zhì),垂徑定理等知識點,能求出CE=DE是解此題的關鍵.4、D【解析】【分析】連接OB,由垂徑定理得出BD的長;連接OB,再在中,由勾股定理得出方程,解方程即可.【詳解】解:連接OB,如圖所示:由題意得:OC⊥AB,∴AD=BD=AB=2(m),在Rt△OBD中,根據(jù)勾股定理得:OD2+BD2=OB2,即(OB﹣1)2+22=OB2,解得:OB=(m),即這個輪子的半徑長為m,故選:D.【考點】本題主要考查垂徑定理的應用以及勾股定理,熟練掌握垂徑定理和勾股定理是解題的關鍵.5、C【解析】【分析】作CD⊥AB于D,根據(jù)勾股定理計算出AB=13,再利用面積法計算出然后根據(jù)直線與圓的位置關系得到當時,以C為圓心、r為半徑作的圓與斜邊AB有公共點.【詳解】解:作CD⊥AB于D,如圖,∵∠C=90°,AC=3,BC=4,∴∴∴以C為圓心、r為半徑作的圓與斜邊AB有公共點時,r的取值范圍為故選:C【考點】本題考查了直線與圓的位置關系:設⊙O的半徑為r,圓心O到直線l的距離為d:直線l和⊙O相交?d<r;直線l和⊙O相切?d=r;直線l和⊙O相離?d>r.二、填空題1、【解析】【分析】根據(jù),得出為的垂直平分線;利用等腰三角形的三線合一可得,進而得出為等邊三角形;利用,得出為直角三角形,解直角三角形,求得等邊三角形的邊長,再利用內(nèi)心的性質(zhì)求出圓的半徑,圓的面積可求.【詳解】解:如圖,設與交于點F,的內(nèi)心為O,連接.∵,∴是線段的垂直平分線.∴.∵,∴.∴.∴為等邊三角形.∴.∵,∴.∵,∴∴.∴.∵,∴.∵O為的內(nèi)心,∴.∴.∴的內(nèi)切圓面積為.故答案為.【考點】本題考查了垂直平分線的判定、三角形內(nèi)切圓、等邊三角形判定與性質(zhì)、解直角三角形,解題關鍵是根據(jù)垂直平分線的判定確定為等邊三角形,根據(jù)解直角三角形求出內(nèi)切圓半徑.2、135【解析】【分析】先根據(jù)直徑所對的圓周角是直角得出,進而求出,再根據(jù)內(nèi)心是三角形內(nèi)角平分線的交點得出,最后利用三角形的內(nèi)角和定理即得.【詳解】∵AB是⊙O的直徑∴∴∵I是△ABC的內(nèi)心∴IA、IB是角平分線∴∴故答案為:135.【考點】本題考查圓周角定理、內(nèi)心、角平分線的定義及三角形內(nèi)角和定理,解題關鍵是熟知:直徑所對的圓周角為直角;三角形的內(nèi)心是內(nèi)角平分線的交點.3、32【解析】【分析】如圖,作CH⊥AB于H交⊙O于E、F,求出A、B的坐標,根據(jù)勾股定理求出AB,再由S△ABC=AB?CH=OB?AC求出點C到AB的距離CH,即可求出圓C上點到AB的最大距離,根據(jù)面積公式求出即可.【詳解】如圖,作CH⊥AB于H交⊙O于E、F,∵直線y=﹣x+6與x軸、y軸分別交于A、B兩點,∴當y=0時,可得0=﹣x+6,解得:x=8,∴A(8,0),當x=0時,得y=6,∴B(0,6),∴OA=8,OB=6,∴=10,∵C(﹣1,0),∴AC=8+1=9,∴S△ABC=AB?CH=OB?AC,∴,∴CH=5.4,∴FH=CH+CF=5.4+1=6.4,即⊙C上到AB的最大距離為6.4,∴△PAB面積的最大值=×10×6.4=32,故答案為32.【考點】本題考查了三角形的面積,勾股定理、三角形等面積法求高、求圓心到直線的距離等知識,解此題的關鍵是求出圓上的點到直線AB的最大距離.4、35【解析】【分析】如圖(見解析),連接AD,先根據(jù)圓周角定理可得,從而可得,再根據(jù)圓周角定理可得,由此即可得.【詳解】如圖,連接AD∵AB是⊙O的直徑∴,即又由圓周角定理得:∵∴故答案為:35.【考點】本題考查了圓周角定理,熟記圓周角定理是解題關鍵.5、【解析】【分析】連接OQ,以OA為直徑作⊙C,確定出點Q的運動路徑即可求得路徑長.【詳解】解:連接OQ.在⊙O中,∵AQ=PQ,OQ經(jīng)過圓心O,∴OQ⊥AP.∴∠AQO=90°.∴點Q在以OA為直徑的⊙C上.∴當點P在⊙O上運動一周時,點Q在⊙C上運動一周.∵AB=4,∴OA=2.∴⊙C的周長為.∴點Q經(jīng)過的路徑長為.故答案為:【考點】本題考查了垂徑定理的推論、圓周角定理的推論、圓周長的計算等知識點,熟知相關定理及其推論是解題的基礎,確定點Q的運動路徑是解題的關鍵.三、解答題1、(1)見解析(2)見解析(3)【解析】【分析】(1)根據(jù)同弧所對的圓周角相等,可得,再由平分,得,從而證明結(jié)論;(2)由,得,再根據(jù),,得,從而有,即可證明;(3)由題意知為內(nèi)心,為外心,設,,則,可求出的長,再根據(jù)勾股定理求出的長,而,從而得出答案.(1)解:證明:平分,,又,;(2)解:證明:,平分,,連接,,平分,,,,,,,點、、在以點為圓心的同一個圓上;(3)解:如圖:,,,,,,,,在中,,在中,設,,則,即,解得:,即,為直徑,,在中,,,,為角平分線的交點,為內(nèi)心,為內(nèi)心與外心之間的距離,內(nèi)心與外心之間的距離為.【考點】本題是圓的綜合題,主要考查了圓周角定理,三角形的內(nèi)心和外心的性質(zhì),圓的定義,勾股定理等知識,解題的關鍵是利用(2)中證明結(jié)論是解決問題(3)的關鍵.2、(1),;(2);(3).【解析】【分析】(1)根據(jù)新定義計算即可;(2)由(1)可知,P的等和點縱坐標比橫坐標大2,根據(jù)等和點的定義,A的橫坐標比縱坐標大2,由此可得方程,求解即可;(3)因為線段MN上總存在線段PC上每個點的等和點.且MN的最小值為5,所以PC的最大距離不能超過5,分別找到點P和點C的等和點所在的區(qū)域或直線,然后得到MN取得最大值時,b的邊界即可.(1)解:由題意可知:∵,∴點Q1是點P的等和點;∵,∴點Q2不是點P的等和點;∵,∴點Q3是點P的等和點;∴點P的等和點有,,(2)解:設,由(1)可知,P的等和點縱坐標比橫坐標大2,∵點P的等和點也是點A的等和點,∴A的橫坐標比縱坐標大2,則,解之得:,故,(3)解:∵P(2,0),∴P點的等和點在直線y=x+2上,∵B(b,0),∴B點的等和點在直線y=x+b上,設直線y=x+b與y軸的交點為B'(0,b),∵BC=1,∴C點在以B為圓心,半徑為1的圓上,∴點C的等和點是兩條直線及其之間與其平行的所有平行線上,以B'為圓心,1為半徑作圓,過點B'作y=x+2的垂線交圓與N點,交直線于M點,∵MN的最小值為5,∴B'M最小值為4,在Rt△B'MP'中,B'P=,∴PB=,∴OB=,同理當B點在y軸左側(cè)時OB=,∴≤b≤.【考點】本題考查新定義,涉及到平面直角坐標系,坐標軸上兩點之間的距離,一次函數(shù),解題的關鍵是理解題意,根據(jù)題意進行求解,(3)較難,需理解題意將其轉(zhuǎn)化為求PC最大值問題.3、(1)見解析;(2)⊙O的半徑是4.5【解析】【分析】(1)如圖1,連接OC,先根據(jù)四邊形ABCD內(nèi)接于⊙O,得,再根據(jù)等量代換和直角三角形的性質(zhì)可得,由切線的判定可得結(jié)論;(2)如圖2,過點O作于G,連接OC,OD,則,先根據(jù)三個角是直角的四邊形是矩形得四邊形OGEC是矩形,設⊙O的半徑為x,根據(jù)勾股定理列方程可得結(jié)論.【詳解】(1)證明:如圖1,連接OC,∵,∴,∵四邊形ABCD內(nèi)接于⊙O,∴又∴,∵,∴,∵,∴,∴,∵OC是⊙O的半徑,∴CE為⊙O的切線;(2)解:如圖2,過點O作于G,連接OC,OD,則,∵,∴四邊形OGEC是矩形,∴,設⊙O的半徑為x,Rt△CDE中,,∴,∴,,由勾股定理得,∴,解得:,∴⊙O的半徑是4.5.【考點】本題考查的是圓的綜合,涉及到圓的切線的證明、勾股定理以及矩形的性質(zhì),熟練掌握相關性質(zhì)是解決問題的關鍵.4、【解析】【分析】證出△DCO是等腰直角三角形,得出DC=CO,求出BO=2AB,連接AO,半徑AO=5,再根據(jù)勾股定理列方程,即可求出AB的長.【詳解】解:∵四邊形ABCD是正方形,∴∠ABC=∠BCD=90°,AB=BC=CD,∴∠DCO=90°,又∵∠POM=45°,∴∠CDO=45°,∴CD=CO,∴BO=BC+CO=BC+CD,∴BO=2AB,連接AO,如圖:∵MN=10,∴AO=5,又∵在Rt△ABO中,AB2+BO2=AO2,∴AB2+(2AB)2=52,解得:AB=,則正方形ABCD的邊長為.【考點】此題考查了正方形的性質(zhì)和等腰直角三角形的性質(zhì),解題的關鍵是證出△DCO是等腰直角三角形,得出BO=2AB,作出輔助線,利用勾股定理列出關于AB的方程.5、(1)見解析;(2)【解析】【分析】(1)欲證明AC是⊙O的切線,只要證明OD⊥AC即可.(2)證明△OBE

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論