2025年考研英語(一)閱讀理解真題解析 模擬試卷匯編_第1頁
2025年考研英語(一)閱讀理解真題解析 模擬試卷匯編_第2頁
2025年考研英語(一)閱讀理解真題解析 模擬試卷匯編_第3頁
2025年考研英語(一)閱讀理解真題解析 模擬試卷匯編_第4頁
2025年考研英語(一)閱讀理解真題解析 模擬試卷匯編_第5頁
全文預覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025年考研英語(一)閱讀理解真題解析模擬試卷匯編考試時間:______分鐘總分:______分姓名:______模擬試卷閱讀下面的文章,回答問題。Theadventoflargelanguagemodels(LLMs)hasheraldedanewerainartificialintelligence,offeringremarkablecapabilitiesinnaturallanguageprocessingandgeneration.However,theirdevelopmentanddeploymentraiseprofoundethicalquestionsthatdemandcarefulconsideration.Oneofthemostsignificantconcernsrevolvesaroundbiasandfairness.LLMsaretrainedonvastdatasetsderivedfromtheinternet,whichinherentlyreflectexistingsocietalbiasesrelatedtorace,gender,age,andothersensitiveattributes.Consequently,thesemodelscaninadvertentlyperpetuateandevenamplifysuchbiasesintheiroutputs,potentiallyleadingtodiscriminatoryoutcomesinapplicationsrangingfromhiringprocessestocontentmoderation.Anothercriticalethicalissueisthepotentialformisuse.LLMscanbeemployedtogeneratemisinformation,disinformation,andpropagandaatanunprecedentedscaleandspeed.Maliciousactorscouldutilizethesemodelstocreateconvincingfakenewsarticles,impersonateindividualsforfraudulentpurposes,orspreadharmfulideologies,underminingpublictrustanddemocraticprocesses.TheabilityofLLMstogeneratehighlyrealistictextalsocomplicatesthetaskofdistinguishingbetweenhumanandmachine-generatedcontent,posingchallengesforauthenticityverification.Furthermore,theenvironmentalimpactoftrainingandrunninglargemodelsisagrowingconcern.Thecomputationalresourcesrequiredforthesetasksconsumesubstantialamountsofenergy,contributingtocarbonemissionsandclimatechange.WhileeffortsarebeingmadetoimprovetheenergyefficiencyofAIalgorithmsandutilizerenewableenergysources,theenvironmentalfootprintofLLMdevelopmentremainssubstantialandnecessitatesongoingattentionandmitigationstrategies.Transparencyandinterpretabilityalsopresentsignificantchallenges.LLMsoftenfunctionas"blackboxes,"withtheirdecision-makingprocessesdifficultforhumanstounderstand.Thislackoftransparencyhindersdebugging,necessitatesrigoroustesting,andmakesitchallengingtoholddevelopersordeployersaccountableforharmfuloutputs.DevelopingmethodstointerpretorexplainhowLLMsarriveatspecificresponsesiscrucialforbuildingtrustandensuringresponsibledeployment.Lastly,theeconomicandsocialdisruptionscausedbyLLMsareprofound.Thesemodelshavethepotentialtoautomatecognitivetaskspreviouslyperformedbyhumans,potentiallyleadingtojobdisplacementinvarioussectors.Whiletheyalsoofferopportunitiesforincreasedproductivityandinnovation,thesocietaladjustmentsrequired,suchasretrainingandeducation,posesignificantchallenges.EnsuringthatthebenefitsofLLMsareequitablydistributedandthatthenegativeimpactsontheworkforcearemitigatedwillrequireproactivepolicyinterventionsandsocietaldialogue.Addressingtheseethicalchallengesrequiresamulti-facetedapproachinvolvingresearchers,developers,policymakers,andthepublic.ResponsibleAIdevelopmentmustprioritizefairness,security,sustainability,transparency,andsocietalwell-being.CollaborationacrossdisciplinesandsectorsisessentialtonavigatethecomplexethicallandscapeofLLMsandensurethatthesepowerfultechnologiesservehumanitypositively.問題:1.Thepassageprimarilydiscussestheethicalimplicationsassociatedwiththedevelopmentandapplicationofwhat?2.Accordingtothepassage,whatisamajorconcernregardingthedatausedtotrainLLMs,andwhatpotentialconsequencedoesthishave?3.TheauthormentionsthegenerationofmisinformationasonepotentialmisuseofLLMs.Provideanexamplescenarioillustratingthismisuse,differentfromanyexplicitlystatedinthepassage.4.WhatspecificchallengedoesthepassageidentifyregardingtheenvironmentalimpactofLLMs,andwhatrelatedissuedoesitmentionthatrequiresattention?5.Explainthesignificanceofthe"blackbox"problemasdescribedinthepassageinthecontextofaccountabilityforLLMoutputs.6.ThepassagealludestobothpotentialbenefitsanddrawbacksofLLMsforemployment.Whatarethesetwoaspects,andaccordingtotheauthor,whatisacorrespondingneedrelatedtothenegativeimpacts?7.Basedonthepassage,whatistherecommendedapproachtotacklingtheethicalchallengesposedbyLLMs?試卷答案1.Largelanguagemodels(LLMs).2.Biasandfairness;perpetuatingandamplifyingsocietalbiasesinoutputs,potentiallyleadingtodiscriminatoryoutcomes.3.Example:ApoliticalcampaignusinganLLMtogeneratepersonalizedbuthighlymanipulativeandfalseattackadstargetingspecificdemographicgroupsbasedondataharvestedonline.4.Thesubstantialenergyconsumptionandassociatedcarbonemissionsduringtrainingandoperation;theneedformitigationstrategies.5.Itmakesitdifficultforhumanstounderstandthedecision-makingprocessesofLLMs,hinderingdebuggingandaccountability,asharmfuloutputscannotbeeasilytracedbacktospecificcausesordevelopers.6.Benefits:Increasedproductivityandinnovation;Drawbacks:Jobdisplacementinvarioussectors;Need:Proactivepolicyinterventionsandsocietaldialogue(suchasretrainingandeducation)tomitigatenegativeimpactsandensureequitabledistributionofbenefits.7.Amulti-facetedapproachinvolvingresearchers,developers,policymakers,andthepublic,prioritizingfairness,security,sustainability,transparency,andsocietalwell-being.每道題解析思路1.解析思路:題目問文章主要討論的是什么倫理問題。通讀全文可知,文章從頭至尾圍繞“大型語言模型(LLMs)”的倫理挑戰(zhàn)展開論述,從偏見公平、濫用、環(huán)境影響、透明度到社會經(jīng)濟影響等多個方面進行了闡述。首段明確指出LLMs的興起帶來了新的倫理問題。因此,正確答案應(yīng)聚焦于LLMs本身。2.解析思路:題目問訓練LLMs的數(shù)據(jù)存在什么主要問題及其后果。文章第二段明確提到,LLMs訓練所使用的數(shù)據(jù)集“inherentlyreflectexistingsocietalbiases”,即固有地反映了現(xiàn)存的社會偏見。接著指出,“Consequently,thesemodelscaninadvertentlyperpetuateandevenamplifysuchbiasesintheiroutputs”,即模型會無意中持續(xù)和放大這些偏見,導致輸出結(jié)果存在歧視性。因此,答案需包含偏見和其后果——歧視性輸出。3.解析思路:題目要求舉例說明LLMs生成虛假信息的濫用場景。文章第二段提到了生成虛假信息、錯誤信息和宣傳品的濫用風險。要求舉例且不同于原文,需自行構(gòu)思一個具體場景。例如,政治活動利用LLM根據(jù)網(wǎng)絡(luò)收集的數(shù)據(jù),為特定群體生成高度個性化但極具操縱性的虛假攻擊廣告,這符合利用LLM進行欺詐和操縱的濫用范疇。4.解析思路:題目問LLMs的環(huán)境影響及其相關(guān)需要關(guān)注的問題。文章第三段指出,訓練和運行大型模型需要“substantialamountsofenergy”和“contributetocarbonemissions”,這是其環(huán)境影響。同時,段末提到盡管有改進,但“theenvironmentalfootprintremainssubstantialandnecessitatesongoingattentionandmitigationstrategies”,即環(huán)境足跡依然巨大,需要持續(xù)關(guān)注和緩解策略。因此,答案包括能源消耗和碳排放,以及需要緩解策略。5.解析思路:題目問“黑箱”問題在LLM輸出可問責性方面的意義。文章第四段描述了LLMs作為“blackboxes”,“theirdecision-makingprocessesdifficultforhumanstounderstand”。解析其意義需關(guān)聯(lián)到問責性,即由于無法理解決策過程,“hindersdebugging,necessitatesrigoroustesting,andmakesitchallengingtoholddevelopersordeployersaccountableforharmfuloutputs”。因此,意義在于阻礙調(diào)試、增加測試難度,并使得對有害輸出難以追究責任。6.解析思路:題目問LLMs對就業(yè)的益處

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論