重難點解析北師大版9年級數(shù)學上冊期中測試卷含完整答案詳解(有一套)_第1頁
重難點解析北師大版9年級數(shù)學上冊期中測試卷含完整答案詳解(有一套)_第2頁
重難點解析北師大版9年級數(shù)學上冊期中測試卷含完整答案詳解(有一套)_第3頁
重難點解析北師大版9年級數(shù)學上冊期中測試卷含完整答案詳解(有一套)_第4頁
重難點解析北師大版9年級數(shù)學上冊期中測試卷含完整答案詳解(有一套)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北師大版9年級數(shù)學上冊期中測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計14分)1、已知△ABC為等腰三角形,若BC=6,且AB,AC為方程x2﹣8x+m=0兩根,則m的值等于()A.12 B.16 C.﹣12或﹣16 D.12或162、下列命題是真命題的是(

)A.對角線相等的四邊形是矩形B.對角線互相垂直的四邊形是矩形C.對角線互相垂直的矩形是正方形D.四邊相等的平行四邊形是正方形3、某種植基地2016年蔬菜產量為80噸,預計2018年蔬菜產量達到100噸,求蔬菜產量的年平均增長率,設蔬菜產量的年平均增長率為x,則可列方程為()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1004、為了解某地區(qū)九年級男生的身高情況,隨機抽取了該地區(qū)1000名九年級男生的身高數(shù)據(jù),統(tǒng)計結果如下.身高人數(shù)60260550130根據(jù)以上統(tǒng)計結果,隨機抽取該地區(qū)一名九年級男生,估計他的身高不低于的概率是(

)A.0.32 B.0.55 C.0.68 D.0.875、如圖,四邊形ABCD是平行四邊形,過點A作AM⊥BC于點M,交BD于點E,過點C作CN⊥AD于點N,交BD于點F,連接CE,當EA=EC,且點M為BC的中點時,AB:AE的值為(

)A.2 B. C. D.6、把方程x2+2x=5(x﹣2)化成ax2+bx+c=0的形式,則a,b,c的值分別為()A.1,﹣3,2 B.1,7,﹣10 C.1,﹣5,12 D.1,﹣3,107、一元二次方程,用配方法解該方程,配方后的方程為()A. B.C. D.二、多選題(3小題,每小題2分,共計6分)1、已知關于的一元二次方程,下列命題是真命題的有(

)A.若,則方程必有實數(shù)根B.若,,則方程必有兩個不相等的實根C.若是方程的一個根,則一定有成立D.若是一元二次方程的根,則2、下列關于矩形的說法中錯誤的是()A.矩形的對角線互相垂直且平分 B.矩形的對角線相等且互相平分C.對角線相等的四邊形是矩形 D.對角線互相平分的四邊形是矩形3、下列關于x的方程沒有實數(shù)根的是(

)A.x2-x+1=0 B.x2+x+1=0C.(x-1)(x+2)=0 D.(x-1)2+1=0第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計20分)1、如圖,在四邊形ABCD中,AC=BD=8,E、F、G、H分別是邊AB、BC、CD、DA的中點,則EG2+FH2的值為_____.2、如圖,在ABC中,點D、E、F分別在邊AB、BC、CA上,且DE∥CA,DF∥BA,下列四種說法:①四邊形AEDF是平行四邊形;②如果∠BAC=90°,那么四邊形AEDF是菱形;③如果AD平分∠BAC,那么四邊形AEDF是菱形;④如果AB=AC,那么四邊形AEDF是菱形.其中,正確的有_____.(只填寫序號)3、已知x=2是關于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一個根,則k的值為_____.4、若m,n是關于x的方程x2-3x-3=0的兩根,則代數(shù)式m2+n2-2mn=_____.5、對一批口罩進行抽檢,統(tǒng)計合格口罩的只數(shù),得到合格口罩的頻率如下:抽取只數(shù)(只)50100150500100020001000050000合格頻率0.820.830.820.830.840.840.840.84估計從該批次口罩中任抽一只口罩是合格品的概率為_____.6、從分別標有A、B、C的3根紙簽中隨機抽取一根,然后放回,再隨機抽取一根,兩次抽簽的所有可能結果的樹形圖如下:那么抽出的兩根簽中,一根標有A,一根標有C的概率是__________.7、若正方形的對角線的長為4,則該正方形的面積為_________.8、如圖,在Rt△ABC中,∠C=90°,AC=8cm,BC=2cm,點P在邊AC上,以2cm/s的速度從點A向點C移動,點Q在邊CB上,以1cm/s的速度從點C向點B移動.點P、Q同時出發(fā),且當一點移動到終點時,另一點也隨之停止,連接PQ,當△PQC的面積為3cm2時,P、Q運動的時間是_____秒.9、如圖,在矩形ABCD中,AB=6,BC=8,點E、F分別是邊AB、BC上的動點,且EF=4,點G是EF的中點,AG、CG,則四邊形AGCD面積的最小值為_______.10、如圖,在長方形中,,在上存在一點、沿直線把折疊,使點恰好落在邊上的點處,若,那么的長為________.四、解答題(6小題,每小題10分,共計60分)1、閱讀例題,解答問題:例:解方程.解:原方程化為.令,原方程化成解得,(不合題意,舍去)...∴原方程的解是,請模仿上面的方法解方程:.2、如圖,在四邊形ABCD中,AD∥BC,對角線BD的垂直平分線與邊AD,BC分別相交于點M,N.(1)求證:四邊形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周長.3、讀詩詞解題:(通過列方程式,算出周瑜去世時的年齡)大江東去浪淘盡,千古風流數(shù)人物;而立之年督東吳,早逝英年兩位數(shù);十位恰小個位三,個位平方與壽符;哪位學子算得快,多少年華屬周瑜?4、如圖,在四邊形中,,,..(1)求的長;(2)求四邊形的面積.5、如圖,點E,F(xiàn)分別在菱形ABCD的邊BC,CD上,且BE=DF,求證:∠BAE=∠DAF.6、解下列方程:(1);(2)-參考答案-一、單選題1、D【解析】【分析】由△ABC為等腰三角形,BC=6,且AB,AC為方程x2﹣8x+m=0兩根,可得兩種情況:①BC=6=AB,把6代入方程得36﹣48+m=0②AB=AC,此時方程的判別式為0,分別求解即可.【詳解】解:∵△ABC為等腰三角形,若BC=6,且AB,AC為方程x2﹣8x+m=0兩根,則①BC=6=AB,把6代入方程得36﹣48+m=0,∴m=12;②AB=AC,此時方程的判別式為0,∴Δ=64﹣4m=0,∴m=16.故m的值等于12或16.故選:D.【考點】本題考查了一元二次方程的判別式和等腰三角形的性質,熟練掌握知識點是解題的關鍵.2、C【解析】【分析】根據(jù)矩形的判定方法對A、B矩形判斷;根據(jù)正方形的判定方法對C、D矩形判斷.【詳解】解:A、對角線相等的平行四邊形是矩形,所以A選項錯誤;B、對角線相等的平行四邊形是矩形,所以B選項錯誤;C、對角線互相垂直的矩形是正方形,所以C選項正確;D、四邊相等的菱形是正方形,所以D選項錯誤.故選C.【考點】本題考查了命題與定理:命題的“真”“假”是就命題的內容而言.任何一個命題非真即假.要說明一個命題的正確性,一般需要推理、論證,而判斷一個命題是假命題,只需舉出一個反例即可.3、A【解析】【分析】利用增長后的量=增長前的量×(1+增長率),設平均每次增長的百分率為x,根據(jù)“從80噸增加到100噸”,即可得出方程.【詳解】由題意知,蔬菜產量的年平均增長率為x,根據(jù)2016年蔬菜產量為80噸,則2017年蔬菜產量為80(1+x)噸,2018年蔬菜產量為80(1+x)(1+x)噸,預計2018年蔬菜產量達到100噸,即:80(1+x)2=100,故選A.【考點】本題考查了一元二次方程的應用(增長率問題).解題的關鍵在于理清題目的含義,找到2017年和2018年的產量的代數(shù)式,根據(jù)條件找準等量關系式,列出方程.4、C【解析】【分析】先計算出樣本中身高不低于170cm的頻率,然后根據(jù)利用頻率估計概率求解.【詳解】解:樣本中身高不低于170cm的頻率,所以估計抽查該地區(qū)一名九年級男生的身高不低于170cm的概率是0.68.故選:C.【考點】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.5、B【解析】【分析】根據(jù)平行四邊形的性質、垂直的定義、平行線的判定定理可以推知AE∥CF;然后由全等三角形的判定定理ASA推知△ADE≌△CBF;最后根據(jù)全等三角形的對應邊相等知AE=CF,所以對邊平行且相等的四邊形是平行四邊形;連接AC交BF于點O,根據(jù)EA=EC推知?ABCD是菱形,根據(jù)菱形的鄰邊相等知AB=BC;然后結合已知條件“M是BC的中點,AM⊥BC”證得△ADE≌△CBF(ASA),所以AE=CF,從而證得△ABC是正三角形;最后在Rt△BCF中,求得CF:BC=,利用等量代換知(AE=CF,AB=BC)AB:AE=.【詳解】解:連接AC,∵四邊形ABCD是平行四邊形,∴BC∥AD;∴∠ADE=∠CBD,∵AD=BC,在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=CF,又∵AM⊥BC,∴AM⊥AD;∵CN⊥AD,∴AM∥CN,∴AE∥CF;∴四邊形AECF為平行四邊形,∵EA=EC,∴?AECF是菱形,∴AC⊥BD,∴平行四邊形ABCD是菱形,∴AB=BC,∵M是BC的中點,AM⊥BC,∴AB=AC,∴△ABC為等邊三角形,∴∠ABC=60°,∠CBD=30°;在Rt△BCF中,CF:BC=,又∵AE=CF,AB=BC,∴AB:AE=.故選:B.【考點】本題綜合考查了全等三角形的判定與性質、菱形的判定與性質以及等邊三角形的判定與性質等知識點,證得?ABCD是菱形是解題的難點.6、D【解析】【分析】先把x2+2x=5(x﹣2)化簡,然后根據(jù)一元二次方程的一般形式即可得到a、b、c的值.【詳解】解:x2+2x=5(x﹣2),x2+2x=5x﹣10,x2+2x﹣5x+10=0,x2﹣3x+10=0,則a=1,b=﹣3,c=10,故選:D.【考點】此題主要考查了一元二次方程化為一般形式,熟練掌握一元二次方程的一般形式是解題的關鍵.7、D【解析】【分析】按照配方法的步驟,移項,配方,配一次項系數(shù)一半的平方.【詳解】∵x2?2x?m=0,∴x2?2x=m,∴x2?2x+1=m+1,∴(x?1)2=m+1.故選D.【考點】此題考查了配方法解一元二次方程,解題時要注意解題步驟的準確使用.二、多選題1、ABD【解析】【分析】A正確,利用判別式判斷即可.B正確,證明Δ>0,即可判斷.C錯誤,c=0時,結論不成立.D正確,利用求根公式,判斷即可.【詳解】解:A、當x=2是,4a+2b+c=0,故x=2是方程的根;則方程ax2+bx+c=0必有實數(shù)根,A正確,B、∵Δ=b2?4ac=(3a+2)2?4a(2a+2)=9a2+12a+4?8a2?8a=a2+4a+4=(a+2)2,∵a>0,∴Δ>0,∴方程有兩個不相等的實數(shù)根,故B正確.C、∵若c是方程ax2+bx+c=0的一個根,∴ac2+bc+c=0,∴c(ac+b+1)=0,∴c=0或ac+b+1=0,故C錯誤.D、∵t是一元二次方程ax2+bx+c=0的根∴t=,∴b2?4ac=(2at+b)2,故D正確,故答案為:A,B,D.【考點】本題考查命題與定理,一元二次方程的根的判別式等知識,解題的關鍵是學會利用參數(shù)解決問題,屬于中考常考題型.2、ACD【解析】【分析】根據(jù)矩形的性質得到:矩形的對角線相等且互相平分,根據(jù)矩形的判定:對角線相等且互相平分且相等的四邊形是矩形,進行逐一判斷即可.【詳解】A.矩形的對角線互相平分,且相等,但不一定互相垂直,說法錯誤,本選項符合題意;B.矩形的對角線相等且互相平分,說法正確,本選項不符合題意;C.對角線相等的四邊形不一定為矩形,例如等腰梯形對角線相等,但不是矩形,說法錯誤,本選項符合題意;D.對角線互相平分的四邊形為平行四邊形,不一定為矩形,說法錯誤,本選項符合題意;故選ACD.【考點】考查矩形的判定與性質,熟練掌握矩形的判定定理與性質定理是解決問題的關鍵.3、ABD【解析】【分析】將選項中的式子轉換為一元二次方程一般式,根據(jù)根的判別式可得結果.【詳解】解:A、x2-x+1=0,,方程沒有實數(shù)根,此選項符合題意;B、x2+x+1=0,,方程沒有實數(shù)根,此選項符合題意;C、(x-1)(x+2)=0,,方程有實數(shù)根,此選項不符合題意;D、原式整理為:,,方程沒有實數(shù)根,此選項符合題意;故選:ABD.【考點】本題考查了根的判別式:一元二次方程的根與有如下關系:當時,方程有兩個不相等的實數(shù)根;當時,方程有兩個相等的實數(shù)根;當時,方程無實數(shù)根.三、填空題1、64【解析】【分析】連接HE、EF、FG、GH,根據(jù)三角形中位線定理、菱形的判定定理得到平行四邊形HEFG是菱形,根據(jù)菱形的性質、勾股定理計算即可.【詳解】解:連接HE、EF、FG、GH,∵E、F分別是邊AB、BC的中點,∴EF=AC=4,EF∥AC,同理可得,HG=AC=4,HG∥AC,EH=BD=4,∴HG=EF,HG∥EF,∴四邊形HEFG為平行四邊形,∵AC=BD,∴EH=EF,∴平行四邊形HEFG是菱形,∴HF⊥EG,HF=2OH,EG=2OE,∴OE2+OH2=EH2=16∴EG2+FH2=(2OE)2+(2OH)2=4(OE2+OH2)=64,故答案為64.【考點】本題考查的是中點四邊形,掌握三角形中位線定理、菱形的判定和性質定理是解題的關鍵.2、①③【解析】【分析】根據(jù)平行四邊形的判定和菱形的判定解答即可.【詳解】解:∵DE∥CA,DF∥BA,∴四邊形AEDF是平行四邊形,故①正確;∵∠BAC=90°,四邊形AEDF是平行四邊形,∴四邊形AEDF是矩形,故②錯誤;∵AD平分∠BAC,四邊形AEDF是平行四邊形,∴四邊形AEDF是菱形,故③正確;∵AB=AC,四邊形AEDF是平行四邊形,不能得出AE=AF,故四邊形AEDF不一定是菱形,故④錯誤;故答案為:①③.【考點】此題考查菱形的判定,關鍵是就平行四邊形的判定和菱形的判定解答.3、﹣3【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解關于k的方程,然后根據(jù)一元二次方程的定義確定k的值即可.【詳解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+3k=0,解得k1=0,k2=﹣3,因為k≠0,所以k的值為﹣3.故答案為﹣3.【考點】本題考查了一元二次方程的定義以及一元二次方程的解,能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.4、21【解析】【分析】先根據(jù)根與系數(shù)的關系得到m+n=3,mn=﹣3,再根據(jù)完全平方公式變形得到m2+n2﹣2mn=(m+n)2﹣4mn,然后利用整體代入的方法計算.【詳解】解:∵m,n是關于x的方程x2-3x-3=0的兩根,∴m+n=3,mn=﹣3,∴m2+n2﹣2mn=(m+n)2﹣4mn=32﹣4×(﹣3)=21.故答案為:21.【考點】本題考查了根與系數(shù)的關系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2,x1x2.5、0.84【解析】【分析】觀察表格合格的頻率趨近于0.84,從而由此得到口罩合格的概率即可.【詳解】解:∵隨著抽樣的增大,合格的頻率趨近于0.84,∴估計從該批次口罩中任抽一只口罩是合格品的概率為0.84.故答案為:0.84.【考點】本題考查了用頻率估計概率,解題關鍵是熟練運用頻率估計概率解決問題.6、【解析】【分析】依據(jù)樹狀圖分析所有等可能的出現(xiàn)結果,然后根據(jù)概率公式求出該事件的概率.【詳解】解:由樹狀圖得:兩次抽簽的所有可能結果一共有9種情況,一根標有,一根標有的有,與,兩種情況,一根標有,一根標有的概率是.故答案為:.【考點】本題考查的是用畫樹狀圖法求概率.畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,適合于兩步或兩步以上完成的事件.用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.7、8【解析】【分析】根據(jù)正方形的面積等于對角線乘積的一半列式計算即可得解.【詳解】解:∵正方形的一條對角線的長為4,∴這個正方形的面積=×42=8.故答案為:8.【考點】本題考查了正方形的性質,熟練掌握正方形的面積的兩種求法是解題的關鍵.8、1【解析】【分析】設P、Q運動的時間是秒,根據(jù)已知條件得到cm,cm,則cm,根據(jù)三角形面積公式列出方程,解方程即可求解.【詳解】解:設P、Q運動的時間是秒,則cm,cm,cm∵△PQC的面積為3cm2,∴,即,解得或(不合題意,舍去),∴當△PQC的面積為3cm2時,P、Q運動的時間是1秒.故答案為:1【考點】本題考查了一元二次方程應用——動點問題,三角形的面積,正確的理解題意是解題的關鍵.9、38【解析】【分析】根據(jù)題目要求,要使四邊形AGCD的面積最小,因為的面積固定,只需使的面積最小即可,即的高最小即可,又在中,,則BG=2,高的最小值為點B到AC的距離減去BG的長度,則可求解.【詳解】依題意,在中,為EF的中點,,,點G在以B為圓心,2為半徑的圓與長方形重合的弧上運動,,要使四邊形AGCD的面積最小,則B所在直線垂直線段AC,又,點B到AC的距離為,此時點G到AC的距離為,故的最小面積為,,故答案為:38.【考點】本題考查了動點問題中四邊形的最小面積問題,利用勾股定理,直角三角形中線的性質,三角形等積法求高等性質定理進行求解,對于相關性質定理的熟練運用是解題的關鍵.10、【解析】【分析】由折疊的性質,得DE=EF,AD=AF,然后求出AF=AD=10,則求出FC的長度,再根據(jù)勾股定理建立方程,即可求出答案.【詳解】解:∵四邊形是長方形,由折疊的性質,,∵,又,在中,;故答案為:.【考點】本題考查了:①折疊的性質:折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等;②矩形的性質,勾股定理求解.四、解答題1、,【解析】【分析】根據(jù)題意利用換元法解一元二次方程,然后解絕對值方程即可.【詳解】解:原方程化為.令,原方程化成.解得,(不合題意,舍去).,.∴原方程的解是,.【考點】本題主要考查了用換元法和因式分解法解一元二次方程,解絕對值方程,解題的關鍵在于能夠準確根據(jù)題意使用換元法解方程.2、(1)見解析(2)菱形BNDM的周長為52【解析】【分析】(1)證△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,證出四邊形BNDM是平行四邊形,進而得出結論;(2)由菱形的性質得出BM=BN=DM=DN,OB=BD=12,OM=MN=2,由勾股定理得BM的長,即可得出答案.(1)證明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是對角線BD的垂直平分線,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四邊形BNDM是平行四邊形,∵MN⊥BD,∴四邊形BNDM是菱形;(2)解:∵四邊形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,∴在Rt△BOM中,由勾股定理得:,∴四邊形BNDM的周長為:4×13=52.【考點】本題考查了菱形的判定與性質、平行四邊形的判定與性質、全等三角形的判定與性質、勾股定理等知識;熟練掌握菱形的判定與性質,證明三角形全等是解題的關鍵.3、周瑜去世的年齡為36歲.【解析】【分析】設周瑜逝世時的年齡的個位數(shù)字為x,則十位數(shù)字為x﹣3.根據(jù)題意建立方程求出其值就可以求出其結論.【詳解】設周瑜逝世時的年齡的個位數(shù)字為x,則十位數(shù)字為x﹣3.由題意得;10(x﹣3)+x=x2,解得:x1=5,x2=6當x=5時,周瑜的年齡25歲,非而立之年,不合題意,舍去;當x=6時,周瑜年齡為36歲,完全符合題意.答:周瑜去世的年齡為36歲.【考點】本題是一道數(shù)字問題的運用題,考查了

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論