版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
中考數(shù)學總復習《圓》考試歷年機考真題集考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖所示,矩形紙片中,,把它分割成正方形紙片和矩形紙片后,分別裁出扇形和半徑最大的圓,恰好能作為一個圓錐的側(cè)面和底面,則的長為(
)A. B. C. D.2、一個商標圖案如圖中陰影部分,在長方形中,,,以點為圓心,為半徑作圓與的延長線相交于點,則商標圖案的面積是(
)A. B.C. D.3、如圖,正方形的邊長為4,以點為圓心,為半徑畫圓弧得到扇形(陰影部分,點在對角線上).若扇形正好是一個圓錐的側(cè)面展開圖,則該圓錐的底面圓的半徑是(
)A. B.1 C. D.4、如圖,在△ABC中,AG平分∠CAB,使用尺規(guī)作射線CD,與AG交于點E,下列判斷正確的是(
)
A.AG平分CDB.C.點E是△ABC的內(nèi)心D.點E到點A,B,C的距離相等5、如圖,破殘的輪子上,弓形的弦AB為4m,高CD為1m,則這個輪子的半徑長為()A.m B.m C.5m D.m第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖所示的網(wǎng)格由邊長為個單位長度的小正方形組成,點、、、在直角坐標系中的坐標分別為,,,則內(nèi)心的坐標為______.2、在⊙O中,若弦垂直平分半徑,則弦所對的圓周角等于_________°.3、如圖,AB是⊙O的直徑,C是⊙O上的點,過點C作⊙O的切線交AB的延長線于點D.若∠A=32°,則∠D=_____度.4、如圖,在⊙O中,的度數(shù)等于250°,半徑OC垂直于弦AB,垂足為D,那么AC的度數(shù)等于________度.5、如圖,四邊形ABCD內(nèi)接于⊙O,∠A=125°,則∠C的度數(shù)為______.三、解答題(5小題,每小題10分,共計50分)1、問題提出(1)如圖①,在△ABC中,AB=AC=10,BC=12,點O是△ABC的外接圓的圓心,則OB的長為問題探究(2)如圖②,已知矩形ABCD,AB=4,AD=6,點E為AD的中點,以BC為直徑作半圓O,點P為半圓O上一動點,求E、P之間的最大距離;問題解決(3)某地有一塊如圖③所示的果園,果園是由四邊形ABCD和弦CB與其所對的劣弧場地組成的,果園主人現(xiàn)要從入口D到上的一點P修建一條筆直的小路DP.已知AD∥BC,∠ADB=45°,BD=120米,BC=160米,過弦BC的中點E作EF⊥BC交于點F,又測得EF=40米.修建小路平均每米需要40元(小路寬度不計),不考慮其他因素,請你根據(jù)以上信息,幫助果園主人計算修建這條小路最多要花費多少元?2、如圖,已知AB是⊙O的直徑,C,D是⊙O上的點,OC∥BD,交AD于點E,連結(jié)BC.(1)求證:AE=ED;(2)若AB=10,∠CBD=36°,求的長.3、已知:如圖,△ABC中,AB=AC,AB>BC.求作:線段BD,使得點D在線段AC上,且∠CBD=∠BAC.作法:①以點A為圓心,AB長為半徑畫圓;②以點C為圓心,BC長為半徑畫弧,交⊙A于點P(不與點B重合);③連接BP交AC于點D.線段BD就是所求作的線段.(1)使用直尺和圓規(guī),依作法補全圖形(保留作圖痕跡);(2)完成下面的證明.證明:連接PC.∵AB=AC,∴點C在⊙A上.∵點P在⊙A上,∴∠CPB=∠BAC.()(填推理的依據(jù))∵BC=PC,∴∠CBD=.()(填推理的依據(jù))∴∠CBD=∠BAC.4、問題探究(1)在中,,分別是與的平分線.①若,,如圖,試證明;②將①中的條件“”去掉,其他條件不變,如圖,問①中的結(jié)論是否成立?并說明理由.遷移運用(2)若四邊形是圓的內(nèi)接四邊形,且,,如圖,試探究線段,,之間的等量關(guān)系,并證明.5、如圖,是的高,為的中點.試說明點在以點為圓心的同一個圓上.-參考答案-一、單選題1、B【解析】【分析】設(shè)AB=xcm,則DE=(6-x)cm,根據(jù)扇形的弧長等于圓錐底面圓的周長列出方程,求解即可.【詳解】設(shè),則DE=(6-x)cm,由題意,得,解得.故選B.【考點】本題考查了圓錐的計算,矩形的性質(zhì),正確理解圓錐的側(cè)面展開圖與原來的扇形之間的關(guān)系是解決本題的關(guān)鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.2、D【解析】【分析】根據(jù)題意作輔助線DE、EF使BCEF為一矩形,從圖中可以看出陰影部分的面積=三角形的面積-(正方形的面積-扇形的面積),依據(jù)面積公式進行計算即可得出答案.【詳解】解:作輔助線DE、EF使BCEF為一矩形.則S△CEF=(8+4)×4÷2=24cm2,S正方形ADEF=4×4=16cm2,S扇形ADF==4πcm2,∴陰影部分的面積=24-(16-4π)=.故選:D.【考點】本題主要考查扇形的面積計算,解題的關(guān)鍵是作出輔助線并從圖中看出陰影部分的面積是由哪幾部分組成的.3、D【解析】【分析】根據(jù)題意,扇形ADE中弧DE的長即為圓錐底面圓的周長,即通過計算弧DE的長,再結(jié)合圓的周長公式進行計算即可得解.【詳解】∵正方形的邊長為4∴∵是正方形的對角線∴∴∴圓錐底面周長為,解得∴該圓錐的底面圓的半徑是,故選:D.【考點】本題主要考查了扇形的弧長公式,圓的周長公式,正方形的性質(zhì)以及圓錐的相關(guān)知識點,熟練掌握弧長公式及圓的周長公式是解決本題的關(guān)鍵.4、C【解析】【分析】根據(jù)作法可得CD平分∠ACB,結(jié)合題意即可求解.【詳解】解:由作法得CD平分∠ACB,
∵AG平分∠CAB,∴E點為△ABC的內(nèi)心故答案為:C.【考點】此題考查了尺規(guī)作圖(角平分線),以及三角形角平分線的性質(zhì),熟練掌握相關(guān)基本性質(zhì)是解題的關(guān)鍵.5、D【解析】【分析】連接OB,由垂徑定理得出BD的長;連接OB,再在中,由勾股定理得出方程,解方程即可.【詳解】解:連接OB,如圖所示:由題意得:OC⊥AB,∴AD=BD=AB=2(m),在Rt△OBD中,根據(jù)勾股定理得:OD2+BD2=OB2,即(OB﹣1)2+22=OB2,解得:OB=(m),即這個輪子的半徑長為m,故選:D.【考點】本題主要考查垂徑定理的應(yīng)用以及勾股定理,熟練掌握垂徑定理和勾股定理是解題的關(guān)鍵.二、填空題1、(2,3)【解析】【分析】根據(jù)A、B、C三點的坐標建立如圖所示的坐標系,計算出△ABC各邊的長度,易得該三角形是直角三角形,設(shè)BC的關(guān)系式為:y=kx+b,求出BC與x軸的交點G的坐標,證出點A與點G關(guān)于BD對稱,射線BD是∠ABC的平分線,三角形的內(nèi)心在BD上,設(shè)點M為三角形的內(nèi)心,內(nèi)切圓的半徑為r,在BD上找一點M,過點M作ME⊥AB,過點M作MF⊥AC,且ME=MF=r,求出r的值,在△BEM中,利用勾股定理求出BM的值,即可得到點M的坐標.【詳解】解:根據(jù)A、B、C三點的坐標建立如圖所示的坐標系,根據(jù)題意可得:AB=,AC=,BC=,∵,∴∠BAC=90°,設(shè)BC的關(guān)系式為:y=kx+b,代入B,C,可得,解得:,∴BC:,當y=0時,x=3,即G(3,0),∴點A與點G關(guān)于BD對稱,射線BD是∠ABC的平分線,設(shè)點M為三角形的內(nèi)心,內(nèi)切圓的半徑為r,在BD上找一點M,過點M作ME⊥AB,過點M作MF⊥AC,且ME=MF=r,∵∠BAC=90°,∴四邊形MEAF為正方形,S△ABC=,解得:,即AE=EM=,∴BE=,∴BM=,∵B(-3,3),∴M(2,3),故答案為:(2,3).【考點】本題考查三角形內(nèi)心、平面直角坐標系、一次函數(shù)的解析式、勾股定理和正方形的判定與性質(zhì)等相關(guān)知識點,把握內(nèi)心是三角形內(nèi)接圓的圓心這個概念,靈活運用各種知識求解即可.2、120°或60°【解析】【分析】根據(jù)弦垂直平分半徑及OB=OC證明四邊形OBAC是矩形,再根據(jù)OB=OA,OE=求出∠BOE=60°,即可求出答案.【詳解】設(shè)弦垂直平分半徑于點E,連接OB、OC、AB、AC,且在優(yōu)弧BC上取點F,連接BF、CF,∴OB=AB,OC=AC,∵OB=OC,∴四邊形OBAC是菱形,∴∠BOC=2∠BOE,∵OB=OA,OE=,∴cos∠BOE=,∴∠BOE=60°,∴∠BOC=∠BAC=120°,∴∠BFC=∠BOC=60°,∴弦所對的圓周角為120°或60°,故答案為:120°或60°.【考點】此題考查圓的基本知識點:圓的垂徑定理,同圓的半徑相等的性質(zhì),圓周角定理,菱形的判定定理及性質(zhì)定理,銳角三角函數(shù),熟練掌握圓的各性質(zhì)定理是解題的關(guān)鍵.3、26【解析】【詳解】分析:連接OC,根據(jù)圓周角定理得到∠COD=2∠A,根據(jù)切線的性質(zhì)計算即可.詳解:連接OC,由圓周角定理得,∠COD=2∠A=64°,∵CD為⊙O的切線,∴OC⊥CD,∴∠D=90°-∠COD=26°,故答案為26.點睛:本題考查的是切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.4、55【解析】【分析】連接OA,OB,由已知可得∠AOB=360°﹣250°=110°,再根據(jù)垂徑定理即可得解.【詳解】連接OA,OB,由已知可得∠AOB=360°﹣250°=110°,∵OC⊥AB,∴,∴∠AOC=∠AOB=55°.故答案為55.【考點】本題主要考查圓心角定理與垂徑定理,解此題的關(guān)鍵在于熟練掌握其知識點.5、55°##55度【解析】【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠A+∠C=180°,再求出答案即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=180°-125°=55°,故答案為:55°.【考點】本題考查了圓內(nèi)接四邊形的性質(zhì)和圓周角定理,能熟記圓內(nèi)接四邊形的對角互補是解此題的關(guān)鍵.三、解答題1、(1);(2)E、P之間的最大距離為7;(3)修建這條小路最多要花費元.【解析】【分析】(1)若AO交BC于K,則AK=8,在Rt△BOK中,設(shè)OB=x,可得x2=62+(8﹣x)2,解方程可得OB的長;(2)延長EO交半圓于點P,可求出此時E、P之間的最大距離為OE+OP的長即可;(3)先求出所在圓的半徑,過點D作DG⊥BC,垂足為G,連接DO并延長交于點P,則DP為入口D到上一點P的最大距離,求出DP長即可求出修建這條小路花費的最多費用.【詳解】(1)如圖,若AO交BC于K,∵點O是△ABC的外接圓的圓心,AB=AC,∴AK⊥BC,BK=,∴AK=,在Rt△BOK中,OB2=BK2+OK2,設(shè)OB=x,∴x2=62+(8?x)2,解得x=,∴OB=;故答案為:.(2)如圖,連接EO,延長EO交半圓于點P,可求出此時E、P之間的距離最大,∵在是任意取一點異于點P的P′,連接OP′,P′E,∴EP=EO+OP=EO+OP′>EP′,即EP>EP′,∵AB=4,AD=6,∴EO=4,OP=OC=,∴EP=OE+OP=7,∴E、P之間的最大距離為7.(3)作射線FE交BD于點M,∵BE=CE,EF⊥BC,是劣弧,∴所在圓的圓心在射線FE上,假設(shè)圓心為O,半徑為r,連接OC,則OC=r,OE=r?40,BE=CE=,在Rt△OEC中,r2=802+(r?40)2,解得:r=100,∴OE=OF?EF=60,過點D作DG⊥BC,垂足為G,∵AD∥BC,∠ADB=45°,∴∠DBC=45°,在Rt△BDG中,DG=BG=,在Rt△BEM中,ME=BE=80,∴ME>OE,∴點O在△BDC內(nèi)部,∴連接DO并延長交于點P,則DP為入口D到上一點P的最大距離,∵在上任取一點異于點P的點P′,連接OP′,P′D,∴DP=OD+OP=OD+OP′>DP′,即DP>DP′,過點O作OH⊥DG,垂足為H,則OH=EG=40,DH=DG?HG=DG?OE=60,∴,∴DP=OD+r=,∴修建這條小路最多要花費40×元.【考點】本題主要考查了圓的性質(zhì)與矩形性質(zhì)的綜合運用,熟練掌握相關(guān)方法是解題關(guān)鍵.2、(1)證明見解析;(2)【解析】【詳解】分析:(1)根據(jù)平行線的性質(zhì)得出∠AEO=90°,再利用垂徑定理證明即可;(2)根據(jù)弧長公式解答即可.詳證明:(1)∵AB是⊙O的直徑,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴=.點睛:此題考查弧長公式,關(guān)鍵是根據(jù)弧長公式和垂徑定理解答.3、(1)見解析;(2)圓周角定理;,圓周角定理的推論【解析】【分析】(1)利用幾何語言畫出對應(yīng)的幾何圖形;(2)先根據(jù)圓周角定理得到,再利用等腰三角形的性質(zhì)得到,從而得到.【詳解】解:(1)如圖,為所作;(2)證明:連接,如圖,,點在上.點在上,(圓周角定理),,(圓周角定理的推論).故答案為:圓周角定理;;圓周角定理的推論.【考點】本題考查了作圖復雜作圖、也考查了圓周角定理,解題的關(guān)鍵是掌握
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年健康食品研發(fā)項目可行性研究報告
- 資產(chǎn)配置策略制定面試題
- 文化傳媒公司戰(zhàn)略規(guī)劃崗位面試題集
- 會計師事務(wù)所面試注意事項及題目
- 巡視崗筆試考試題庫含答案
- 2025年養(yǎng)老院智能管理系統(tǒng)建設(shè)項目可行性研究報告
- 2025年環(huán)保智能手機外殼生產(chǎn)項目可行性研究報告
- 2025年公共衛(wèi)生應(yīng)急響應(yīng)體系建設(shè)項目可行性研究報告
- 2025年螞蟻金服金融科技應(yīng)用可行性研究報告
- 2025年新型食品加工技術(shù)應(yīng)用可行性研究報告
- 成品綜合支吊架深化設(shè)計及施工技術(shù)專項方案
- 改革開放簡史智慧樹知到課后章節(jié)答案2023年下北方工業(yè)大學
- 木薯變性淀粉生產(chǎn)應(yīng)用課件
- 地下水污染與防治課件
- 校門安全管理“十條”
- 超全QC管理流程圖
- 臨時工勞動合同簡易版可打印
- 潔凈室施工及驗收規(guī)范標準
- -井巷工程課程設(shè)計
- pks r5xx裝機及配置手冊
- GB/T 17215.322-2008交流電測量設(shè)備特殊要求第22部分:靜止式有功電能表(0.2S級和0.5S級)
評論
0/150
提交評論