版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數(shù)學下冊《平行四邊形》同步測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,已知平行四邊形ABCD的面積為8,E、F分別是BC、CD的中點,則△AEF的面積為()A.2 B.3 C.4 D.52、在平行四邊形ABCD中,∠A=30°,那么∠B與∠A的度數(shù)之比為()A.4:1 B.5:1 C.6:1 D.7:13、如圖,點E是長方形ABCD的邊CD上一點,將ADE沿著AE對折,點D恰好折疊到邊BC上的F點,若AD=10,AB=8,那么AE長為()A.5 B.12 C.5 D.134、如圖,正方形的面積為256,點F在上,點E在的延長線上,的面積為200,則的長為()A.10 B.11 C.12 D.155、在銳角△ABC中,∠BAC=60°,BN、CM為高,P為BC的中點,連接MN、MP、NP,則結論:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④當∠ABC=60°時,MN∥BC,一定正確的有()A.①②③ B.②③④ C.①②④ D.①④第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,M,N分別是矩形ABCD的邊AD,AB上的點,將矩形ABCD沿MN折疊,使點A恰好落在邊BC上的點E處,連接MC,若AB=8,AD=16,BE=4,則MC的長為________.2、如圖,在矩形ABCD中,BC=2,AB=x,點E在邊CD上,且CEx,將BCE沿BE折疊,若點C的對應點落在矩形ABCD的邊上,則x的值為_______.3、如圖,點E,F(xiàn)在正方形ABCD的對角線AC上,AC=10,AE=CF=3,則四邊形BFDE的面積為_____.4、如圖,△ABC中,D、E分別是AB、AC的中點,若DE=4cm,則BC=_____cm.5、如圖,O為坐標原點,△ABO的兩個頂點A(6,0),B(6,6),點D在邊AB上,點C在邊OA上,且BD=AC=1,點P為邊OB上的動點,則PC+PD的最小值為_____.三、解答題(5小題,每小題10分,共計50分)1、如圖所示,在邊長為1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D兩點的一動點,N是CD上一動點,且AM+CN=1.(1)證明:無論M,N怎樣移動,△BMN總是等邊三角形;(2)求△BMN面積的最小值.2、如圖,已知正方形中,點是邊延長線上一點,連接,過點作,垂足為點,與交于點.(1)求證:;(2)若,,求BG的長.3、已知:如圖,在四邊形中,,.求證:(1)BECD;(2)四邊形是矩形.4、如圖,在平行四邊形ABCD中,,點E、F分別是BC、AD的中點.(1)求證:;(2)當時,在不添加輔助線的情況下,直接寫出圖中等于的2倍的所有角.5、△ABC為等邊三角形,AB=4,AD⊥BC于點D,E為線段AD上一點,AE=.以AE為邊在直線AD右側構造等邊△AEF.連結CE,N為CE的中點.
(1)如圖1,EF與AC交于點G,①連結NG,求線段NG的長;②連結ND,求∠DNG的大?。?)如圖2,將△AEF繞點A逆時針旋轉,旋轉角為α.M為線段EF的中點.連結DN、MN.當30°<α<120°時,猜想∠DNM的大小是否為定值,并證明你的結論.-參考答案-一、單選題1、B【解析】【分析】連接AC,由平行四邊形的性質可得,再由E、F分別是BC,CD的中點,即可得到,,,由此求解即可.【詳解】解:如圖所示,連接AC,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,AB=CD,AB∥CD,∴∵E、F分別是BC,CD的中點,∴,,,∴,故選B.【點睛】本題主要考查了平行四邊形的性質,與三角形中線有關的面積問題,解題的關鍵在于能夠熟練掌握平行四邊形的性質.2、B【解析】【分析】根據(jù)平行四邊形的性質先求出∠B的度數(shù),即可得到答案.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠B=180°-∠A=150°,∴∠B:∠A=5:1,故選B.【點睛】本題主要考查了平行四邊形的性質,解題的關鍵在于能夠熟練掌握平行四邊形鄰角互補.3、C【解析】【分析】根據(jù)矩形的性質,折疊的性質,勾股定理即可得到結論.【詳解】解:∵四邊形ABCD是矩形,∴,,,∵將△ADE沿著AE對折,點D恰好折疊到邊BC上的F點,∴,,∴,∴,∵,∴,∴,∴,∴,故選:C.【點睛】本題考查了翻折變換,矩形的性質,勾股定理等知識,解題的關鍵是學會利用參數(shù)構建方程解決問題.4、C【解析】【分析】先證明Rt△CDF≌Rt△CBE,故CE=CF,根據(jù)△CEF的面積計算CE,根據(jù)正方形ABCD的面積計算BC,根據(jù)勾股定理計算BE.【詳解】解:∵∠ECF=90°,∠DCB=90°,∴∠BCE=∠DCF,∴,∴△CDF≌△CBE,故CF=CE.因為Rt△CEF的面積是200,即?CE?CF=200,故CE=20,正方形ABCD的面積=BC2=256,得BC=16.根據(jù)勾股定理得:BE==12.故選:C.【點睛】本題考查了正方形,等腰直角三角形面積的計算,考查了直角三角形中勾股定理的運用,本題中求證CF=CE是解題的關鍵.5、C【解析】【分析】利用直角三角形斜邊上的中線的性質即可判定①正確;利用含30度角的直角三角形的性質即可判定②正確,由勾股定理即可判定③錯誤;由等邊三角形的判定及性質、三角形中位線定理即可判定④正確.【詳解】∵CM、BN分別是高∴△CMB、△BNC均是直角三角形∵點P是BC的中點∴PM、PN分別是兩個直角三角形斜邊BC上的中線∴故①正確∵∠BAC=60゜∴∠ABN=∠ACM=90゜?∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正確在Rt△ABN中,由勾股定理得:故③錯誤當∠ABC=60゜時,△ABC是等邊三角形∵CM⊥AB,BN⊥AC∴M、N分別是AB、AC的中點∴MN是△ABC的中位線∴MN∥BC故④正確即正確的結論有①②④故選:C【點睛】本題考查了直角三角形斜邊上中線的性質,含30度角的直角三角形的性質,等邊三角形的判定及性質,勾股定理,三角形中位線定理等知識,掌握這些知識并正確運用是解題的關鍵.二、填空題1、10【解析】【分析】過E作EF⊥AD于F,根據(jù)矩形ABCD沿MN折疊,使點A恰好落在邊BC上的點E處,得出△ANM≌△ENM,可得AM=EM,根據(jù)矩形ABCD,得出∠B=∠A=∠D=90°,再證四邊形ABEF為矩形,得出AF=BE=4,F(xiàn)E=AB=8,設AM=EM=m,F(xiàn)M=m-4,根據(jù)勾股定理,即,解方程m=10即可.【詳解】解:過E作EF⊥AD于F,∵矩形ABCD沿MN折疊,使點A恰好落在邊BC上的點E處,∴△ANM≌△ENM,∴AM=EM,∵矩形ABCD,∴∠B=∠A=∠D=90°,∵FE⊥AD,∴∠AFE=∠B=∠A=90°,∴四邊形ABEF為矩形,∴AF=BE=4,F(xiàn)E=AB=8,設AM=EM=m,F(xiàn)M=m-4在Rt△FEM中,根據(jù)勾股定理,即,解得m=10,∴MD=AD-AM=16-10=6,在Rt△MDC中,∴MC=.故答案為10.【點睛】本題考查折疊軸對稱性質,矩形判定與性質,勾股定理,掌握折疊軸對稱性質,矩形判定與性質,勾股定理是解題關鍵.2、或【解析】【分析】分兩種情況進行解答,即當點落在邊上和點落在邊上,分別畫出相應的圖形,利用翻折變換的性質,勾股定理進行計算即可.【詳解】解:如圖1,當點落在邊上,由翻折變換可知,,,在△中,由勾股定理得,,,在中,由勾股定理得,,即,解得,或(舍去),如圖2,當點落在邊上,由翻折變換可知,四邊形是正方形,,,故答案為:或.【點睛】本題考查翻折變換,解題的關鍵是掌握翻折變換的性質以及勾股定理是解決問題的前提.3、20【解析】【分析】連接BD,交AC于O,根據(jù)題意和正方形的性質可求得EF=4,AC⊥BD,由即可求解.【詳解】解:如圖,連接BD,交AC于O,∵四邊形ABCD是正方形,AC=10,∴AC=BD=10,AC⊥BD,OA=OC=OB=OD=5,∵AE=CF=3,∴EO=FO=2,∴EF=EO+FO=4,∴故答案為:20.【點睛】本題主要考查了正方形的性質,熟練掌握正方形的對角線相等且互相垂直平分是解題的關鍵.4、8【解析】【分析】運用三角形的中位線的知識解答即可.【詳解】解:∵△ABC中,D、E分別是AB、AC的中點∴DE是△ABC的中位線,∴BC=2DE=8cm.故答案是8.【點睛】本題主要考查了三角形的中位線,掌握三角形的中位線等于底邊的一半成為解答本題的關鍵.5、6【解析】【分析】過點D作DE⊥AB交y軸于點E,交BO于點P,得矩形ACPD,正方形OCPE,此時PC+PD的值最小.【詳解】解:∵A(6,0),B(6,6),∴OA=AB=6,∴∠B=∠COP=45°,如圖,過點D作DE⊥AB交y軸于點E,交BO于點P,∴∠PDA=∠DAC=∠PCA=90°,∴四邊形ACPD是矩形,∴AC=DP,PC=AD,同理可得四邊形OCPE是矩形,∵∠COP=45°,∴PC=OC,∴四邊形OCPE是正方形,∵BD=AC=1,∴DP=BD=1,∴PC=AD=5,∴PC+PD=6,此時PC+PD的值最小,為6.故答案為:6.【點睛】本題考查了矩形的判定與性質,正方形的判定以及垂線段最短問題.三、解答題1、(1)見解析;(2)△BMN面積的最小值為【分析】(1)連接BD,證明△AMB≌△DNB,則可得BM=BN,∠MBA=∠NBD,由菱形的性質易得∠MBN=60゜,從而可證得結論成立;(2)過點B作BE⊥MN于點E.【詳解】(1)證明:如圖所示,連接BD,在菱形ABCD中,∠DAB=60°,∴∠ADB=∠NDB=60°,故△ADB是等邊三角形,∴AB=BD,又AM+CN=1,DN+CN=1,∴AM=DN,在△AMB和△DNB中,,∴△AMB≌△DNB(SAS),∴BM=BN,∠MBA=∠NBD,又∠MBA+∠DBM=60°,∴∠NBD+∠DBM=60°,即∠MBN=60°,∴△BMN是等邊三角形;(2)過點B作BE⊥MN于點E.設BM=BN=MN=x,則,故,∴當BM⊥AD時,x最小,此時,,.∴△BMN面積的最小值為.【點睛】本題考查了菱形的性質,等邊三角形的判定與性質,垂線段最短,全等三角形的判定與性質等知識,關鍵是作輔助線證三角形全等.2、(1)見解析;(2)【分析】(1)由正方形的性質可得,,由的余角相等可得∠CBG=∠CDE,進而證明△BCG≌△DCE,從而證明CG=CE;(2)證明正方形的性質可得,結合已知條件即可求得,進而勾股定理即可求得的長【詳解】(1)∵BF⊥DE∴∠BFE=90°∵四邊形ABCD是正方形∴∠DCE=90°,∴∠CBG+∠E=∠CDE+∠E,∴∠CBG=∠CDE∴△BCG≌△DCE∴CG=CE(2)∵,且,,∴∵CG=CE∴,在中,【點睛】本題考查了正方形的性質,全等三角形的性質與判定,勾股定理,掌握三角形全等的性質與判定與勾股定理是解題的關鍵.3、(1)見詳解;(2)見詳解【分析】(1)根據(jù)平行四邊形的判定定理得四邊形是平行四邊形,進而即可得到結論;(2)先推出∠EBC=∠DCB,進而可得∠EBC=∠DCB=90°,然后得到結論.【詳解】(1)證明:∵,∴BE=CD,∵,∴四邊形是平行四邊形,∴BECD;(2)∵,∴AB=AC,∠ABE=∠ACD,∴∠ABC=∠ACB,∴∠ABE+∠ABC=∠ACD+∠ACB,即:∠EBC=∠DCB,∵BE∥CD,∴∠EBC+∠DCB=180°,∴∠EBC=∠DCB=90°,∴四邊形是矩形.【點睛】本題主要考查平行四邊形的判定和性質,矩形的判定定理,全等三角形的性質,熟練掌握矩形的判定定理是關鍵.4、(1)證明見解析;(2)【分析】(1)先證明再證明從而可得結論;(2)證明是等邊三角形,再分別求解從而可得答案.【詳解】證明(1)平行四邊形ABCD中,,點E、F分別是BC、AD的中點,(2),是等邊三角形,四邊形是平行四邊形,而,所以等于的2倍的角有:【點睛】本題考查的是全等三角形的判定與性質,等邊三角形的判定與性質,平行四邊形的性質,證明“是等邊三角形”是解(2)的關鍵.5、(1)①;②;(2)的大小是定值,證明見解析.【分析】(1)①先根據(jù)等邊三角形的性質、勾股定理可得,從而可得,再利用勾股定理可得,然后根據(jù)等邊三角形的性質可得,最后根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可得;②先根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,再根據(jù)等腰三角形的性質可得,從而可得,然后根據(jù)四邊形的內角和即可得;(2)連接,先證出,根據(jù)全等三角形的性質可得,從而可得,再根據(jù)三角形中位線定理可得,然
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 投資股權合同范本
- 稅務擔保合同范本
- 薦股合作協(xié)議合同
- 蜜蜂賠償協(xié)議書
- 視頻錄像協(xié)議書
- 認籌購房協(xié)議書
- 設備折舊協(xié)議書
- 設備退車協(xié)議書
- 評審合作協(xié)議書
- 試聘期合同協(xié)議
- 療傷旅館商業(yè)計劃書
- 橋下空間施工方案
- 臨床腫瘤診療核心技巧
- 購買電影票合同范本
- 2025西部機場集團航空物流有限公司招聘考試筆試備考題庫及答案解析
- 生化檢測項目原理及臨床意義
- 玉米秸稈飼料銷售合同
- DGTJ08-10-2022 城鎮(zhèn)天然氣管道工程技術標準
- 《絲綢之路的開通與經(jīng)營西域》課件
- 2025八年級英語上冊期末真題卷
- 重癥康復治療的原則與方法
評論
0/150
提交評論