版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
北師大版9年級數(shù)學上冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、神奇的自然界處處蘊含著數(shù)學知識.動物學家在鸚鵡螺外殼上發(fā)現(xiàn),其每圈螺紋的直徑與相鄰螺紋直徑的比約為0.618.這體現(xiàn)了數(shù)學中的(
)A.平移 B.旋轉(zhuǎn) C.軸對稱 D.黃金分割2、如圖,菱形ABCD中,∠BAD=60°,AC、BD交于點O,E為CD延長線上的一點,且CD=DE,連接BE分別交AC,AD于點F、G,連結(jié)OG、AE.則下列結(jié)論:①OG=AB;
②四邊形ABDE是菱形;③;其中正確的是(
)A.①② B.①③ C.②③ D.①②③3、直線不經(jīng)過第二象限,則關于的方程實數(shù)解的個數(shù)是(
).A.0個 B.1個 C.2個 D.1個或2個4、已知x1,x2是一元二次方程2x2-3x=5的兩個實數(shù)根,下列結(jié)論錯誤的是()A.2-3x1=5 B.(x1-x2)(2x1+2x2-3)=0C.x1+x2= D.x1x2=5、如圖,點A與點B關于原點對稱,點C在第四象限,∠ACB=90°.點D是軸正半軸上一點,AC平分∠BAD,E是AD的中點,反比例函數(shù)()的圖象經(jīng)過點A,E.若△ACE的面積為6,則的值為(
)A. B. C. D.6、如圖,在矩形ABCD中,E,F(xiàn)分別是AD,BC的中點,連結(jié)AF,BE,CE,DF分別交于點M,N,則四邊形EMFN是()A.梯形 B.菱形C.矩形 D.無法確定二、多選題(6小題,每小題2分,共計12分)1、圖,在邊長為4的正方形ABCD中,點E,F(xiàn)分別是邊BC,AB的中點,連接AE,DF交于點N,將沿AE翻折,得到,AG交DF于點M,延長EG交AD的延長線于點H,連接CG,ME,取ME的中點為點O,連接NO,GO.則以下結(jié)論正確的有(
)A. B. C. D.2、下列關于位似圖形的說法中正確的是(
)A.相似圖形一定是位似圖形,位似圖形一定是相似圖形B.位似圖形一定有位似中心C.如果兩個圖形是相似圖形,且每組對應點的連線所在的直線都經(jīng)過同一個點,那么這兩個圖形是位似圖形D.位似圖形上任意兩點與位似中心的距離之比等于位似比3、下列命題中真命題有(
)A.四個角相等的四邊形是矩形 B.對角線垂直的四邊形是菱形C.對角線相等的平行四邊形是矩形 D.四邊相等的四邊形是正方形4、如圖,在邊長為4的正方形ABCD中,點E,F(xiàn)分別是邊BC,AB的中點,連接AE,DF交于點N,將△ABE沿AE翻折,得到△AGE,AG交DF于點M,延長EG交AD的延長線于點H,連接CG,ME,取ME的中點為點O,連接NO,GO.則以下結(jié)論正確的有(
)A. B.C.△GEC為等邊三角形 D.5、如圖,在△ABC中,點D、E分別在邊AB、AC上,且BD=2AD,CE=2AE,則下列結(jié)論中成立的是()A.△ABC∽△ADE B.DE∥BCC.DE:BC=1:2 D.S△ABC=9S△ADE6、下列四個說法中,不正確的是(
)A.一元二次方程有實數(shù)根B.一元二次方程有實數(shù)根C.一元二次方程有實數(shù)根D.一元二次方程x2+4x+5=a(a≥1)有實數(shù)根第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、若,則________.2、在數(shù)學活動課上,老師帶領數(shù)學小組測量大樹的高度.如圖,數(shù)學小組發(fā)現(xiàn)大樹離教學樓有5m,高1.4m的竹竿在水平地面的影子長1m,此時大樹的影子有一部分映在地面上,還有一部分映在教學樓的墻上,墻上的影子離為2m,那么這棵大樹高___________m.3、正方形ABCD的邊長為1,點P為對角線AC上任意一點,PE⊥AD,PF⊥CD,垂足分別是E,F(xiàn).則PE+PF=_____.4、“降次”是解一元二次方程的基本思想,用這種思想解高次方程x3-x=0,它的解是_____________.5、如圖,在邊長為1的正方形ABCD中,等邊△AEF的頂點E、F分別在邊BC和CD上則下列結(jié)論:①CE=CF:②∠AEB=75°;③S△EFC=1;④,其中正確的有______(用序號填寫)6、圖1是一種手機托架,使用該手機托架示意圖如圖3所示,底部放置手機處寬AB1.2厘米,托架斜面長BD6厘米,它有C到F共4個檔位調(diào)節(jié)角度,相鄰兩個檔位間的距離為0.8厘米,檔位C到B的距離為2.4厘米.將某型號手機置于托架上(圖2),手機屏幕長AG是15厘米,O是支點且OBOE2.5厘米(支架的厚度忽略不計).當支架調(diào)到E檔時,點G離水平面的距離GH為__________cm.7、如圖,點E、F分別是矩形ABCD邊BC和CD上的點,把△CEF沿直線EF折疊得到△GEF,再把△BEG沿直線BG折疊,點E的對應點H恰好落在對角線BD上,若此時F、G、H三點在同一條直線上,且線段HF與HD也恰好關于某條直線對稱,則的值為______.8、如圖,正方形ABCD的邊長為6,點E在邊CD上.以點A為中心,把△ADE順時針旋轉(zhuǎn)90°至△ABF的位置.若DE=2,則FE=___.四、解答題(6小題,每小題10分,共計60分)1、如圖,在平面直角坐標系中,一次函數(shù)由函數(shù)平移得到,且與函數(shù)的圖象交于點.(1)求一次函數(shù)的表達式;(2)已知點,過點作平行于軸的直線,交直線于點,交函數(shù)的圖象于點.當時,直接寫出的取值范圍.2、如圖,四邊形ABCD是菱形,邊長為10cm,對角線AC,BD交于點O,∠BAD=60°.(1)求對角線AC,BD的長;(2)求菱形的面積.3、關于x的一元二次方程kx2+(k+1)x+=0.(1)當k取何值時,方程有兩個不相等的實數(shù)根?(2)若其根的判別式的值為3,求k的值及該方程的根.4、已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動,當其中一點到達終點后,另外一點也隨之停止運動.(1)如果P、Q分別從A、B同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2?(2)在(1)中,△PQB的面積能否等于7cm2?請說明理由.5、如圖,矩形ABCD中,AB=2cm,BC=3cm,點E從點B沿BC以2cm/s的速度向點C移動,同時點F從點C沿CD以1cm/s的速度向點D移動,當E,F(xiàn)兩點中有一點到達終點時,另一點也停止運動.當△AEF是以AF為底邊的等腰三角形時,求點E運動的時間.6、如圖,∠1=∠2=∠3,試找出圖中兩對相似三角形,并說明為什么?-參考答案-一、單選題1、D【解析】【分析】根據(jù)黃金分割的定義即可求解.【詳解】解:動物學家在鸚鵡螺外殼上發(fā)現(xiàn),其每圈螺紋的直徑與相鄰螺紋直徑的比約為0.618.這體現(xiàn)了數(shù)學中的黃金分割.故選:D【考點】本題考查了黃金分割的定義,黃金分割是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,其比值為,約等于0.618,這個比例被公認為是最能引起美感的比例,因此被稱為黃金分割.熟知黃金分割的定義是解題關鍵.2、D【解析】【分析】證明四邊形ABDE為平行四邊形可得OB=OD,由菱形ABCD可得AG=DG,根據(jù)三角形中位線定理可判斷①;根據(jù)等邊三角形的性質(zhì)和判定可得△ABD為等邊三角形AB=BD,從而可判斷平行四邊形ABDE是菱形,由此判斷②;借助相似三角形的性質(zhì)和判定,三角形中線有關的面積問題可判斷③.【詳解】解:∵四邊形ABCD是菱形,∴AB∥CD,AB=CD=AD,OA=OC,OB=OD,∵CD=DE,∴AB=DE.又∵AB∥DE,∴四邊形ABDE是平行四邊形,∴BG=EG,AB=DE,AG=DG,又∵OD=OB,∴OG是△BDA是中位線,∴OG=AB,故①正確;∵∠BAD=60°,AB=AD,∴△BAD是等邊三角形,∴BD=AB,∴是菱形,故②正確;∵OB=OD,AG=DG,∴OG是△ABD的中位線,∴OG∥AB,OG=AB,∴△GOD∽△ABD(ASA),△ABF∽△OGF(ASA),∴△GOD的面積=△ABD的面積,△ABF的面積=△OGF的面積的4倍,AF:OF=2:1,∴△AFG的面積=△OGF的面積的2倍,又∵△GOD的面積=△AOG的面積=△BOG的面積,∴S四邊形ODGF=S△ABF;故③正確;故選:D.【考點】本題考查了菱形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)、三角形中位線定理、相似三角形的判定與性質(zhì)等知識.判斷①的關鍵是三角形中位線定理的運用,②的關鍵是利用等邊三角形證明BD=AB;③的關鍵是通過相似得出面積之間的關系.3、D【解析】【分析】根據(jù)直線不經(jīng)過第二象限,得到,再分兩種情況判斷方程的解的情況.【詳解】∵直線不經(jīng)過第二象限,∴,∵方程,當a=0時,方程為一元一次方程,故有一個解,當a<0時,方程為一元二次方程,∵?=,∴4-4a>0,∴方程有兩個不相等的實數(shù)根,故選:D.【考點】此題考查一次函數(shù)的性質(zhì):利用函數(shù)圖象經(jīng)過的象限判斷字母的符號,方程的解的情況,注意易錯點是a的取值范圍,再分類討論.4、D【解析】【分析】根據(jù)一元二次方程的根的判別式、一元二次方程根的定義、一元二次方程根與系數(shù)的關系逐一進行分析即可.【詳解】解:∵x1、x2是一元二次方程2x2-3x=5的兩個實數(shù)根,∴,故A正確,不符合題意;這里a=2,b=-3,c=-5,∴,,∵,∴,∴,故B、C正確,不符合題意,D錯誤,符合題意.故選:D.【考點】本題考查了一元二次方程根的意義,根與系數(shù)的關系等,熟練掌握根與系數(shù)的關系,,是解題的關鍵.5、C【解析】【分析】過A作,連接OC、OE,根據(jù)點A與點B關于原點對稱,∠ACB=90°,AC平分∠BAD得出,從而得出三角形AEC的面積與三角形AOE的面積相等,設,根據(jù)E是AD的中點得出得出三角形OAE的面積等于四邊形AFGE的面積建立等量關系求解.【詳解】解:過A作,連接OC,連接OE:∵點A與點B關于原點對稱,∠ACB=90°∴又∵AC平分∠BAD∴∴∴設,根據(jù)E是AD的中點得出:∴解得:故答案選:C.【考點】本題考查反比例函數(shù)與幾何綜合,有一定的難度.將三角形AEC的面積轉(zhuǎn)化與三角形AOE的面積相等是解題關鍵.6、B【解析】【分析】求出四邊形ABFE為平行四邊形,四邊形BFDE為平行四邊形,根據(jù)平行四邊形的性質(zhì)得出BE∥FD,即ME∥FN,同理可證EN∥MF,得出四邊形EMFN為平行四邊形,求出ME=MF,根據(jù)菱形的判定得出即可.【詳解】連接EF.∵四邊形ABCD為矩形,∴AD∥BC,AD=BC,又∵E,F(xiàn)分別為AD,BC中點,∴AE∥BF,AE=BF,ED∥CF,DE=CF,∴四邊形ABFE為平行四邊形,四邊形BFDE為平行四邊形,∴BE∥FD,即ME∥FN,同理可證EN∥MF,∴四邊形EMFN為平行四邊形,∵四邊形ABFE為平行四邊形,∠ABC為直角,∴ABFE為矩形,∴AF,BE互相平分于M點,∴ME=MF,∴四邊形EMFN為菱形.故選B.【考點】本題考查了矩形的性質(zhì)和判定,菱形的判定,平行四邊形的性質(zhì)和判定的應用,能綜合運用性質(zhì)進行推理是解此題的關鍵,題目比較好,綜合性比較強.二、多選題1、ABC【解析】【詳解】解:∵四邊形ABCD是正方形,∴AD=AB=BC,∠DAB=∠B=90°,∴∠ADF+∠AFD=90°,∵點E、F分別是邊BC、AB的中點,∴AF=AB,BE=EC=BC,∴AF=BE,∴△DAF≌△ABE(SAS),∴∠BAE=∠ADF,∴∠BAE+∠AFD=90°,∴∠ANF=180°-(∠BAE+∠AFD)=90°,∴∠AND=90°,故A正確;∵四邊形ABCD是正方形,∴AD∥BC,∴∠DAE=∠AEB,由折疊得:∠AEB=∠AEG,∴∠DAE=∠AEG,∴AH=EH,故B正確;由折疊得:∠AEB=∠AEG=(180°-∠GEC),GE=BE=EC,∴∠EGC=∠ECG=(180°-∠GEC),∴.∠AEB=∠GCE,∴AE∥CG,故C正確;∵O為ME中點,∴,,∴+,∵+-,且△AGE≌△DAF,∴+-,∵∠AND=90°=∠ANF,∠FAN=∠MAN,AN=AN,∴△ANF≌△ANM,∴+-,∴,只有M是邊DN中點的時,D才成立,故D錯誤;故選A、B、C.【考點】本題考查正方形和折疊的綜合應用,熟練掌握正方形的性質(zhì)、折疊的性質(zhì)、三角形全等的判定和性質(zhì)、三角形內(nèi)角和定理、平行線的判定等是解題關鍵.2、B【解析】【分析】根據(jù)位似圖形的性質(zhì)解答.【詳解】解:A、位似圖形一定是相似圖形,相似圖形不一定是位似圖形,故該選項錯誤;B、位似圖形一定有位似中心,故該項正確;C、如果兩個圖形是相似圖形,且每組對應點的連線所在的直線都經(jīng)過同一個點,且對應邊平行,那么這兩個圖形是位似圖形,故該項錯誤;D、位似圖形上對應點與位似中心的距離之比等于位似比,故該項錯誤;故選:B.【考點】此題考查位似圖形的性質(zhì):位似圖形對應點與位似中心的連線的比等于位似比,兩個位似圖形一定是相似圖形,熟記性質(zhì)是解題的關鍵.3、AC【解析】【分析】真命題就是正確的命題,即如果命題的題設成立,那么結(jié)論一定成立.因此,分別根據(jù)矩形、菱形、正方形的判定作出判斷得即可.【詳解】解:A、根據(jù)四邊形的內(nèi)角和是360度得出,四個角相等的四邊形即四個內(nèi)角是直角,故此四邊形是矩形,故此命題是真命題,符合題意;B、只有對角線互相平分且垂直的四邊形是菱形,故此命題不是真命題,不符合題意;C、對角線互相平分且相等的四邊形是矩形,故此命題不是真命題,符合題意;D、四邊相等的四邊形是菱形,故此命題不是真命題,不符合題意.故選AC.【考點】本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的性質(zhì)定理.4、ABD【解析】【分析】由正方形的性質(zhì)可得,則易證,然后可判定A選項,由折疊的性質(zhì)及平行線的性質(zhì)可得B選項,由題意易得,進而根據(jù)三角形中線及等積法可判定D選項.【詳解】解:∵四邊形ABCD是正方形,∴,AD∥BC,∴,∵點E,F(xiàn)分別是邊BC,AB的中點,∴,∴(SAS),∴,∵,∴,∴,由折疊性質(zhì)可得,∴,∴,假設△GEC為等邊三角形成立,則有,∴,∴,∴,∴與AB=2BE相矛盾,故假設不成立;由折疊的性質(zhì)可知,∴,∴,∵ME的中點為點O,∴,∴;綜上所述:正確的有ABD;故選ABD.【考點】本題主要考查全等三角形的性質(zhì)與判定、正方形的性質(zhì)、折疊性質(zhì)及等積法,熟練掌握全等三角形的性質(zhì)與判定、正方形的性質(zhì)、折疊性質(zhì)及等積法是解題的關鍵.5、ABD【解析】【分析】由已知條件易證DE∥BC,則△ABC∽△ADE,再由相似三角形的性質(zhì)即可得到問題的選項.【詳解】解:∵BD=2AD,CE=2AE,∴,∴DE∥BC,故B正確;∴△ABC∽△ADE,故A正確;∴DE:BC=AD:AB=1:3,故C錯誤;∴S△ABC=9S△ADE故D正確,∴其中成立的jABD,故選ABD.【考點】本題考查了平行四邊形的性質(zhì)以及相似三角形的判定和性質(zhì),證明DE∥BC是解題的關鍵.6、ABC【解析】【分析】判斷上述方程的根的情況,只要看根的判別式△的值的符號就可以了.【詳解】解:、△,方程無實數(shù)根,錯誤,符合題意;、△,方程無實數(shù)根,錯誤,符合題意;、△,方程無實數(shù)根,錯誤,符合題意;、△,方程有實數(shù)根,正確,不符合題意;故選:ABC.【考點】本題考查了一元二次方程根的情況與判別式△的關系:解題的關鍵是掌握(1)△方程有兩個不相等的實數(shù)根;(2)△方程有兩個相等的實數(shù)根;(3)△方程沒有實數(shù)根.三、填空題1、【解析】【分析】設,,代入求解即可.【詳解】由可設,,k是非零整數(shù),則.故答案為:.【考點】本題主要考查了比例的基本性質(zhì),準確利用性質(zhì)變形是解題的關鍵.2、9【解析】【分析】根據(jù)同一時刻影長與物高成比例,先求出CE,再求AB即可.【詳解】解:延長AD交BC延長線于E,根據(jù)同一時刻影長與物高成比例可得CE:CD=1:1.4,∵CD=2m,∴CE=m,∴BE=BC+CE=5+=m,∴BE:AB=1:1.4,∴AB=9m.故答案為:9.【考點】本題考查平行投影問題,掌握平行攝影的原理是同一時刻影長與物高成比例是解題關鍵.3、1【解析】【分析】證明四邊形DEPF是矩形得PE=DF,證明△PFC是等腰直角三角形得PF=CF便可求得結(jié)果.【詳解】解:∵四邊形ABCD是正方形,∴∠ADC=90°,∠ACD=,∵PE⊥AD,PF⊥CD,∴四邊形DEPF是矩形,∴PE=DF,∵∠ACD=45°,∠PFC=90°,∴PF=CF,∴PE+PF=DF+CF=CD=1,故答案為:1.【考點】本題主要考查了正方形的性質(zhì),矩形的性質(zhì)與判定,等腰直角三角形的判定,關鍵是證明PE=DF,PF=CF.4、【解析】【分析】先把方程的左邊分解因式,再化為三個一次方程進行降次,再解一次方程即可.【詳解】解:則或或解得:故答案為:【考點】本題考查的是利用因式分解的方法把高次方程轉(zhuǎn)化為一次方程,掌握“因式分解的方法與應用”是解本題的關鍵.5、①②④【解析】【分析】根據(jù)三角形的全等的知識可以判斷①的正誤;根據(jù)角角之間的數(shù)量關系,以及三角形內(nèi)角和為180°判斷②的正誤;根據(jù)等邊三角形的邊長求得直角三角形的邊長,從而求得面積③的正誤,根據(jù)勾股定理列方程可以判斷④的正誤.【詳解】解:∵四邊形ABCD是正方形,∴AB=AD,∵△AEF是等邊三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC-BE=CD-DF,∴CE=CF,∴①說法正確;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②說法正確;∵正方形ABCD的邊長為1,③說法錯誤,∵∠AEB=75°,∠AEF=60°,∴∠CEF=45°,∴△CEF是等腰直角三角形,設BE=DF=x,∴CE=CF=1-x,(不合題意,舍去),∴EF=;④說法正確;∴正確的有①②④.故答案為①②④.【考點】本題主要考查正方形的性質(zhì)的知識點,解答本題的關鍵是熟練掌握全等三角形的證明以及輔助線的正確作法,此題難度不大.6、【解析】【分析】如圖3中,作DT⊥AH于T,OK⊥BD于K.解直角三角形求出BK,OK,利用相似三角形的性質(zhì)求出DT,BT,AD,即可求出GH的長.【詳解】如圖3中,作DT⊥AH于T,OK⊥BD于K.∵OB=OE=2.5cm,BE=2.4+0.82=4(cm),OK⊥BE,∴BK=KE=2(cm),∴OK(cm),∵∠OBK=∠DBT,∠OKB=∠BTD=90°,∴△BKO∽△BTD,∴,∴,∴BT=4.8(cm),DT=3.6(cm),AT=1.2+4.8=6(cm),∴AD=(cm),∵DT∥GH,∴△ATD∽△AHG,∴,∴,∴(cm).故答案為:.【考點】本題考查了相似三角形的應用,勾股定理的應用等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考填空題中的壓軸題.7、【解析】【分析】根據(jù)線段HF與HD也恰好關于某條直線對稱,可得HF=HD,由折疊和同角的余角相等得,然后證明,再利用設元法即可解決問題.【詳解】解:∵線段HF與HD也恰好關于某條直線對稱,∴HF=HD,∴∠HFD=∠FDH,∴∠BHF=2∠HFD由折疊可知:GF=CF,HG=CE=EG,,∠BHG=∠BEG,∠CEF=∠GEF,∵∠BEG+∠CEF+∠GEF=180°,∴2∠HFD+2∠CEF=180°∴∠HFD+∠CEF=90°,又∵∠CFE+∠CEF=90°∴,又∵HF=HD,∴△DHF是等邊三角形,∴∠CBD=∠CEF=30°,∴,設GF=CF=x,HF=DF=y,則HG=CE=EG=,HF=HG+GF=GE+CF,即y=x+,∵,∴.【考點】本題主要考查折疊的性質(zhì)、軸對稱的性質(zhì)、相似三角形的判定與性質(zhì).解決本題的關鍵是掌握翻折的性質(zhì).8、【解析】【分析】由旋轉(zhuǎn)的性質(zhì)可得BF=DE=2,∠D=∠ABF=90°,在直角△EFC中,由勾股定理可求解.【詳解】解:∵把△ADE順時針旋轉(zhuǎn)90°得△ABF,∴BF=DE=2,∠D=∠ABF=90°,∴∠ABC+∠ABF=180°,∴點F,點B,點C共線,在直角△EFC中,EC=6-2=4,CF=BC+BF=8.根據(jù)勾股定理得:EF=,故答案為:.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),勾股定理,靈活運用這些性質(zhì)解決問題是本題的關鍵.四、解答題1、(1)一次函數(shù)的表達式為:;(2).【解析】【分析】(1)由點在函數(shù)圖像上,可求,可得點,由一次函數(shù)由函數(shù)平移得到,可得,由一次函數(shù)過點A,可得即可;(2)當時,點位于點的下方.即反比例函數(shù)的圖像在一次函數(shù)圖像的上方,符合條件的點在點A的左側(cè),y軸右側(cè),即即可【詳解】解:(1)∵點在函數(shù)圖像上,∴,∴點,又∵一次函數(shù)由函數(shù)平移得到,∴,∵一次函數(shù)過點A,∴,∴一次函數(shù)的表達式為:;(2)當時,點位于點的下方.即反比例函數(shù)的圖像在一次函數(shù)圖像的上方,符合條件的點在點A的左側(cè),即【考點】本題考查平行線的性質(zhì),一次函數(shù)解析式,反比例函數(shù)的性質(zhì),利用函數(shù)圖像求的條件是解題關鍵.2、(1)BD=10cm,AC=cm(2)菱形的面積為cm2【解析】【分析】(1)利用已知條件易求BD的長,再由勾股定理可求出AO的長,進而可求對角線AC的長;(2)利用菱形的面積等于其對角線積的一半,即可求得面積.(1)解:在菱形ABCD中,AB=AD=10cm,∠BAD=60°,∴△ABD是等邊三角形,∴BD=10cm.由菱形的性質(zhì)知AC⊥BD,BO=DO,OA=OC,∴BO=BD=5cm,在Rt△AOB中,AO==cm,∴AC=2AO=(cm).(2)解:菱形的面積為×10×=(cm2).【考點】本題主要考查的是菱形的性質(zhì):菱形的四條邊都相等,對角線互相垂直平分,還考查了勾股定理的應用.3、(1)且;(2)【解析】【分析】(1)由方程有兩個不相等的實數(shù)根,得到,列不等式結(jié)合,從而可得答案;(2)利用列方程求解再把的值代入原方程,解方程即可得到答案.【詳解】解:(1)該方程的判別式為:,∵方程有兩個不相等的實數(shù)根,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年云南大學附屬醫(yī)院開展校園招聘30人的備考題庫及參考答案詳解1套
- 小學數(shù)學作業(yè)中使用AI解題助手的注意力分配效果研究課題報告教學研究課題報告
- 河北省2026年度定向選調(diào)生招錄備考題庫完整參考答案詳解
- 中國地質(zhì)大學(北京)2026年度專職輔導員招聘10人備考題庫及參考答案詳解
- 2025年鼓東街道公開招聘專職網(wǎng)格員備考題庫(12月)及答案詳解一套
- 2025年廣東風華高新科技股份有限公司校園招聘備考題庫附答案詳解
- 2025年西華大學先進飛行器與動力科研創(chuàng)新團隊科研助理崗位招聘備考題庫及答案詳解一套
- 2025年輕工所公開招聘備考題庫完整參考答案詳解
- 2025年天津醫(yī)科大學口腔醫(yī)院第一批公開招聘備考題庫及參考答案詳解一套
- 2025年西安市浐灞絲路學校招聘總務處干事備考題庫含答案詳解
- 2025年秋人教版(2024)初中美術(shù)七年級上冊期末知識點復習卷及答案
- 2025年高校行政面試題及答案
- 調(diào)車服務合同范本
- 2026年計算機四級(Linux工程師實務)考試題及答案
- 2025年新《中國傳統(tǒng)文化》考試復習題(附答案)
- 行車搬遷改造協(xié)議書
- 遼寧省遼西重點高中2025-2026學年高一上學期11月期中考試數(shù)學試題(原卷版)
- 雨課堂學堂在線學堂云《English for Presentations at International Medical Conferences》單元測試考核答案
- 形勢與政策(吉林大學)智慧樹知到答案2024年吉林大學
- 某燃氣熱電有限公司設備招標文件
- 掃路車使用說明書-通用
評論
0/150
提交評論