重難點解析京改版數(shù)學(xué)9年級上冊期末測試卷及完整答案詳解【有一套】_第1頁
重難點解析京改版數(shù)學(xué)9年級上冊期末測試卷及完整答案詳解【有一套】_第2頁
重難點解析京改版數(shù)學(xué)9年級上冊期末測試卷及完整答案詳解【有一套】_第3頁
重難點解析京改版數(shù)學(xué)9年級上冊期末測試卷及完整答案詳解【有一套】_第4頁
重難點解析京改版數(shù)學(xué)9年級上冊期末測試卷及完整答案詳解【有一套】_第5頁
已閱讀5頁,還剩30頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

京改版數(shù)學(xué)9年級上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、記某商品銷售單價為x元,商家銷售此種商品每月獲得的銷售利潤為y元,且y是關(guān)于x的二次函數(shù).已知當(dāng)商家將此種商品銷售單價分別定為55元或75元時,他每月均可獲得銷售利潤1800元;當(dāng)商家將此種商品銷售單價定為80元時,他每月可獲得銷售利潤1550元,則y與x的函數(shù)關(guān)系式是(

)A.y=﹣(x﹣60)2+1825 B.y=﹣2(x﹣60)2+1850C.y=﹣(x﹣65)2+1900 D.y=﹣2(x﹣65)2+20002、古希臘數(shù)學(xué)家歐多克索斯在深入研究比例理論時,提出了分線段的“中末比”問題:點G將一線段分為兩線段,,使得其中較長的一段是全長與較短的段的比例中項,即滿足,后人把這個數(shù)稱為“黃金分割”數(shù),把點G稱為線段的“黃金分割”點.如圖,在中,已知,,若D,E是邊的兩個“黃金分割”點,則的面積為(

)A. B. C. D.3、如圖,已知動點,分別在軸,軸正半軸上,動點在反比例函數(shù)圖象上,軸,當(dāng)點的橫坐標(biāo)逐漸增大時,的面積將會()A.越來越小 B.越來越大C.不變 D.先變大后變小4、對于函數(shù)的圖象,下列說法不正確的是(

)A.開口向下 B.對稱軸是直線C.最大值為 D.與軸不相交5、如圖,正五邊形內(nèi)接于⊙,為上的一點(點不與點重合),則的度數(shù)為(

)A. B. C. D.6、下表中列出的是一個二次函數(shù)的自變量x與函數(shù)y的幾組對應(yīng)值:…-2013……6-4-6-4…下列各選項中,正確的是A.這個函數(shù)的圖象開口向下B.這個函數(shù)的圖象與x軸無交點C.這個函數(shù)的最小值小于-6D.當(dāng)時,y的值隨x值的增大而增大二、多選題(7小題,每小題2分,共計14分)1、已知蓄電池的電壓為定值,使用蓄電池時,電流I(單位:A)與電阻R(單位:Ω)是反比例函數(shù)關(guān)系,它的圖象如圖所示.下列說法正確的是(

)A.函數(shù)解析式為I= B.當(dāng)R=9Ω時,I=4AC.蓄電池的電壓是13V D.當(dāng)I≤10A時,R≥3.6Ω2、二次函數(shù)(,,為常數(shù),)的部分圖象如圖所示,圖象頂點的坐標(biāo)為,與軸的一個交點在點和點之間,給出的四個結(jié)論中正確的有(

)A. B.C. D.時,方程有解3、在Rt△ABC中,∠C=90°,則下列式子不成立的是()A.sinA=sinB B.cosA=cosB C.tanA=tanB D.cotA=tanB4、如圖,的頂點位于正方形網(wǎng)格的格點上,若,則滿足條件的是(

)A. B.C. D.5、△ABC和△A′B′C′符合下列條件,其中使△ABC和△A′B′C′相似的是(

)A.∠A=∠A′=45°,∠B=26°,∠B′=109°B.AB=1,AC=1.5,BC=2,A′B′=4,A′C′=2,B′C′=3C.∠A=∠B′,AB=2,AC=2.4,A′B′=3.6,B′C′=3D.AB=3,AC=5,BC=7,A′B′=,A′C′=,B′C′=6、下表時二次函數(shù)y=ax2+bx+c的x,y的部分對應(yīng)值:…………則對于該函數(shù)的性質(zhì)的判斷中正確的是()A.該二次函數(shù)有最大值B.不等式y(tǒng)>﹣1的解集是x<0或x>2C.方程y=ax2+bx+c的兩個實數(shù)根分別位于﹣<x<0和2<x<之間D.當(dāng)x>0時,函數(shù)值y隨x的增大而增大7、如果一種變換是將拋物線向右平移2個單位或向上平移1個單位,我們把這種變換稱為拋物線的簡單變換.已知拋物線經(jīng)過兩次簡單變換后的一條拋物線是y=x2+1,則原拋物線的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+17第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、若一元二次方程(b,c為常數(shù))的兩根滿足,則符合條件的一個方程為_____.2、圖1是一輛吊車的實物圖,圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉(zhuǎn)動點A離地面BD的高度AH為3.4m.當(dāng)起重臂AC長度為9m,張角∠HAC為118°時,操作平臺C離地面的高度為_______米.(結(jié)果保留小數(shù)點后一位:參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)3、如圖,直線MN∥PQ,直線AB分別與MN,PQ相交于點A,B.小宇同學(xué)利用以下步驟作圖:①以點A為圓心,適當(dāng)長為半徑作弧交射線AN于點C,交線段AB于點D;②以點C為圓心,適當(dāng)長為半徑畫??;然后再以點D為圓心,同樣長為半徑畫弧.前后兩弧在∠NAB內(nèi)交于點E;③作射線AE,交PQ于點F;若AF=2,∠FAN=30°,則線段BF的長為_____.4、如圖,平行四邊形ABCD中,,點的坐標(biāo)是,以點為頂點的拋物線經(jīng)過軸上的點A,B,則此拋物線的解析式為__________________.5、二次函數(shù)的部分圖象如圖所示,由圖象可知,方程的解為___________________;不等式的解集為___________________.6、在平面直角坐標(biāo)系中,二次函數(shù)過點(4,3),若當(dāng)0≤x≤a時,y有最大值7,最小值3,則a的取值范圍是_____.7、我們用符號表示不大于的最大整數(shù).例如:,.那么:(1)當(dāng)時,的取值范圍是______;(2)當(dāng)時,函數(shù)的圖象始終在函數(shù)的圖象下方.則實數(shù)的范圍是______.四、解答題(6小題,每小題10分,共計60分)1、如圖所示,拋物線的對稱軸為直線,拋物線與軸交于、兩點,與軸交于點.(1)求拋物線的解析式;(2)連結(jié),在第一象限內(nèi)的拋物線上,是否存在一點,使的面積最大?最大面積是多少?2、如圖,矩形ABCD中,AB=6cm,BC=12cm..點M從點A開始沿AB邊向點B以1cm/秒的速度向B點移動,點N從點B開始沿BC邊以2cm/秒的速度向點C移動.若M,N分別從A,B點同時出發(fā),設(shè)移動時間為t(0<t<6),△DMN的面積為S.(1)求S關(guān)于t的函數(shù)關(guān)系式,并求出S的最小值;(2)當(dāng)△DMN為直角三角形時,求△DMN的面積.3、如圖,拋物線與軸交于兩點,與軸交于點,且,.(1)求拋物線的表達(dá)式;(2)點是拋物線上一點.①在拋物線的對稱軸上,求作一點,使得的周長最小,并寫出點的坐標(biāo);②連接并延長,過拋物線上一點(點不與點重合)作軸,垂足為,與射線交于點,是否存在這樣的點,使得,若存在,求出點的坐標(biāo);若不存在,請說明理由.4、如圖,A,B兩點被池塘隔開,在AB外取一點C,連接AC,BC,在AC上取點M,使AM=3MC,作MN∥AB交BC于點N,量得MN=38m,求AB的長.5、(1)解方程:(2)計算:6、五一期間,小明跟父母去烏鎮(zhèn)旅游,欣賞烏鎮(zhèn)水鄉(xiāng)的美景.如圖,當(dāng)小明走到烏鎮(zhèn)古橋的C處時,發(fā)現(xiàn)遠(yuǎn)處有一瞍船勻速行駛過來,當(dāng)船行駛到A處時,小明測得船頭的俯角為30°,同時小明開始計時,船在航行過小明所在的橋之后,繼續(xù)向前航行到達(dá)B處,此時測得船尾的俯角為45°;從小明開始計時到船行駛至B處,共用時15min;已知小明所在位置距離水面6m,船長3m,船到水面的距離忽略不計,請你幫助小明計算一下船的航行速度(結(jié)果保留根號)-參考答案-一、單選題1、D【解析】【分析】設(shè)二次函數(shù)的解析式為:y=ax2+bx+c,根據(jù)題意列方程組即可得到結(jié)論.【詳解】解:設(shè)二次函數(shù)的解析式為:y=ax2+bx+c,∵當(dāng)x=55,y=1800,當(dāng)x=75,y=1800,當(dāng)x=80時,y=1550,∴,解得a=?2,b=260,c=?6450,∴y與x的函數(shù)關(guān)系式是y=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000,故選:D.【考點】本題考查了根據(jù)實際問題列二次函數(shù)關(guān)系式,正確的列方程組是解題的關(guān)鍵.2、A【解析】【分析】作AF⊥BC,根據(jù)等腰三角形ABC的性質(zhì)求出AF的長,再根據(jù)黃金分割點的定義求出BE、CD的長度,得到中DE的長,利用三角形面積公式即可解題.【詳解】解:過點A作AF⊥BC,∵AB=AC,∴BF=BC=2,在Rt,AF=,∵D是邊的兩個“黃金分割”點,∴即,解得CD=,同理BE=,∵CE=BC-BE=4-(-2)=6-,∴DE=CD-CE=4-8,∴S△ABC===,故選:A.【考點】本題考查了“黃金分割比”的定義、等腰三角形的性質(zhì)、勾股定理的應(yīng)用以及三角形的面積公式,求出DE和AF的長是解題的關(guān)鍵。3、C【解析】【分析】設(shè)點,作可得,根據(jù)可得答案.【詳解】解:如圖,過點作于點,則,設(shè)點,則,當(dāng)點的橫坐標(biāo)逐漸增大時,的面積將會不變,始終等于,故選:.【考點】本題主要考查反比例函數(shù)系數(shù)的幾何意義,熟練掌握在反比例函數(shù)的圖象上任意一點向坐標(biāo)軸作垂線,這一點和垂足以及坐標(biāo)原點所構(gòu)成的三角形的面積是,且保持不變.4、D【解析】【分析】根據(jù)二次函數(shù)的性質(zhì),進(jìn)行判斷,即可得到答案.【詳解】解:∵,則開口向下,故A正確;對稱軸是直線,故B正確;當(dāng),y有最大值k,故C正確;當(dāng),,與y軸肯定有交點,故D錯誤;故選擇:D.【考點】本題考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟記二次函數(shù)的性質(zhì).5、B【解析】【分析】根據(jù)圓周角的性質(zhì)即可求解.【詳解】連接CO、DO,正五邊形內(nèi)心與相鄰兩點的夾角為72°,即∠COD=72°,同一圓中,同弧或同弦所對應(yīng)的圓周角為圓心角的一半,故∠CPD=,故選B.【考點】此題主要考查圓內(nèi)接多邊形的性質(zhì),解題的關(guān)鍵是熟知圓周角定理的應(yīng)用.6、C【解析】【分析】利用表中的數(shù)據(jù),求得二次函數(shù)的解析式,再配成頂點式,根據(jù)二次函數(shù)的性質(zhì)逐一分析即可判斷.【詳解】解:設(shè)二次函數(shù)的解析式為,依題意得:,解得:,∴二次函數(shù)的解析式為=,∵,∴這個函數(shù)的圖象開口向上,故A選項不符合題意;∵,∴這個函數(shù)的圖象與x軸有兩個不同的交點,故B選項不符合題意;∵,∴當(dāng)時,這個函數(shù)有最小值,故C選項符合題意;∵這個函數(shù)的圖象的頂點坐標(biāo)為(,),∴當(dāng)時,y的值隨x值的增大而增大,故D選項不符合題意;故選:C.【考點】本題主要考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的性質(zhì),利用二次函數(shù)的性質(zhì)解答是解題關(guān)鍵.二、多選題1、BD【解析】【分析】設(shè)函數(shù)解析式為,將點(4,9)代入判斷A錯誤;將R=9Ω代入判斷B正確;由解析式判斷C錯誤;由函數(shù)性質(zhì)判斷D正確.【詳解】解:設(shè)函數(shù)解析式為,將點(4,9)代入,得,∴函數(shù)解析式為,故A錯誤;當(dāng)R=9Ω時,I=4A,故B正確;蓄電池的電壓是36V,故C錯誤;∵39>0,∴I隨R的增大而減小,∴當(dāng)I≤10A時,R≥3.6Ω,故D正確;故選:BD.【考點】此題考查了求反比例函數(shù)解析式,反比例函數(shù)的增減性,已知自變量求函數(shù)值的大小,正確掌握反比例函數(shù)的綜合知識是解題的關(guān)鍵.2、BCD【解析】【分析】根據(jù)拋物線與軸有兩個交點,可知,即可判斷A選項;根據(jù)時,,即可判斷B選項;根據(jù)對稱軸,即可判斷C選項;D.根據(jù)拋物線的頂點坐標(biāo)為,函數(shù)有最大即可判定D.【詳解】解:由圖象可知,拋物線開口向下,對稱軸在軸的右側(cè),與軸的交點在軸的負(fù)半軸,∵拋物線與軸有兩個交點,∴,∴,即,故A錯誤;由圖象可知,時,,∴,故B正確;∵拋物線的頂點坐標(biāo)為,∴,,∵,∴,即,故C正確;∵拋物線的開口向下,頂點坐標(biāo)為,∴(為任意實數(shù)),即時,方程有解.故D正確.故選BCD.【考點】本題主要考查了二次函數(shù)的性質(zhì)、二次函數(shù)圖像等知識點,掌握二次函數(shù)的性質(zhì)與解析式的關(guān)系是解答本題的關(guān)鍵.3、ABC【解析】【分析】本題利用銳角三角函數(shù)的定義求解,即銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.【詳解】解:、,,,故錯誤,符合題意;、,,,故錯誤,符合題意;、,,,故錯誤,符合題意;、,,則,故正確,不符合題意;故選:ABC.【考點】本題考查了銳角三角函數(shù)的定義,解題的關(guān)鍵是熟練掌握銳角三角函數(shù)的定義,即銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.4、AD【解析】【分析】根據(jù)在直角三角形中一個角的正切值等于其所對的邊與斜邊的比值進(jìn)行構(gòu)造直角三角形求解判斷即可.【詳解】解:A、如圖所示,,∴,故此選項符合題意;B、如圖所示,,∴,故此選項不符合題意;C、如圖所示,,∴,故此選項不符合題意;D、如圖所示,,,BD⊥AC,∴,∴,∴∴,故此選項符合題意;故選AD.【考點】本題主要考查了求正切值和勾股定理,解題的關(guān)鍵在于能夠構(gòu)造直角三角形進(jìn)行求解.5、ABC【解析】【分析】根據(jù)三角形相似的判定定理逐項排查即可.【詳解】解:A:∵∠A=∠A′=45°,∠B=26°,∠B′=109°,∴∠C=109°,∠C′=26°,∴∠B=∠C,∴△ABC∽△A′C′B′,B:∵AB=1,AC=1.5,BC=2,A′B′=4,A′C′=2,B′C′=3,∴,∴△ABC∽△C′A′B′;C:∵∠A=∠B′,AB=2,AC=2.4,A′B′=3.6,B′C′=3,∴AB:B′C′=AC:A′B′=2:3,∴△ABC∽△B′C′A′;D:∵AB=3,AC=5,BC=7,A′B′=,A′C′=

B′C′=,∴,∴不相似.故選ABC.【考點】本題主要考查了相似三角形的判定,相似三角形的判定方法主要有:①有兩個對應(yīng)角相等的三角形相似;②有兩個對應(yīng)邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應(yīng)邊的比相等,則兩個三角形相似.6、BC【解析】【分析】由圖表可得二次函數(shù)y=ax2+bx+c的對稱軸為直線x=1,a>0,即可判斷A,D不正確,由圖表可直接判斷B,C正確.【詳解】解:∵當(dāng)x=0時,y=-1;當(dāng)x=2時,y=-1;當(dāng)x=,y=;當(dāng)x=,y=;∴二次函數(shù)y=ax2+bx+c的對稱軸為直線x=1,x>1時,y隨x的增大而增大,x<1時,y隨x的增大而減?。郺>0即二次函數(shù)有最小值則A,D錯誤由圖表可得:不等式y(tǒng)>-1的解集是x<0或x>2;由圖表可得:方程ax2+bx+c=0的兩個實數(shù)根分別位于-<x<0和2<x<之間;所以選項B,C正確,故選:BC.【考點】本題考查了拋物線與x軸的交點,二次函數(shù)的性質(zhì),二次函數(shù)的最值,理解圖表中信息是本題的關(guān)鍵.7、ACD【解析】【分析】根據(jù)圖象左移加,右移減,圖象上移加,下移減,可得答案.【詳解】解:A、y=x2?1,先向上平移1個單位得到y(tǒng)=x2,再向上平移1個單位可以得到y(tǒng)=x2+1,故A符合題意;B、y=x2+6x+5=(x+3)2?4,右移3個單位,再上移5得到y(tǒng)=x2+1,故B不符合題意;C、y=x2+4x+4=(x+2)2,先向右平移2個單位得到y(tǒng)=(x+2?2)2=x2,再向上平移1個單位得到y(tǒng)=x2+1,故C符合題意;D、y=x2+8x+17=(x+4)2+1,先向右平移2個單位得到y(tǒng)=(x+4?2)2+1,再向右平移1個單位得到y(tǒng)=(x+4?2-2)2+1=x2+1,故D符合題意.故選:ACD.【考點】本題考查了二次函數(shù)圖象與幾何變換,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式,注意由目標(biāo)函數(shù)圖象到原函數(shù)圖象方向正好相反.三、填空題1、(答案不唯一)【解析】【分析】設(shè)與交點為,根據(jù)題意關(guān)于y軸對稱和二次函數(shù)的對稱性,可找到的值(只需滿足互為相反數(shù)且滿足即可)即可寫出一個符合條件的方程【詳解】設(shè)與交點為,根據(jù)題意則的對稱軸為故設(shè)則方程為:故答案為:【考點】本題考查了二次函數(shù)的對稱性,二次函數(shù)與一元二次方程的關(guān)系,熟悉二次函數(shù)的性質(zhì)和找到兩根的對稱性類比二次函數(shù)的對稱性是解題的關(guān)鍵2、7.6【解析】【分析】作于,于,如圖2,易得四邊形為矩形,則,,再計算出,在中利用正弦可計算出,然后計算即可.【詳解】解:作于E,于,如圖2,∴四邊形為矩形,∴,,∴,∴在中,,∴,∴,∴操作平臺離地面的高度為.故答案是:.【考點】本題考查了解直角三角形的應(yīng)用:先將實際問題抽象為數(shù)學(xué)問題(畫出平面圖形,構(gòu)造出直角三角形轉(zhuǎn)化為解直角三角形問題),然后利用三角函數(shù)的定義進(jìn)行幾何計算.3、2【解析】【分析】過B作BG⊥AF于G,依據(jù)AB=BF,運用等腰三角形的性質(zhì),即可得出GF的長,進(jìn)而得到BF的長.【詳解】解:如圖,過B作BG⊥AF于G,∵M(jìn)N∥PQ,∴∠FAN=∠3=30°,由題意得:AF平分∠NAB,∴∠1=∠2=30°,∴∠1=∠3=30°,∴AB=BF,又∵BG⊥AF,∴AG=GF=AF=,∴Rt△BFG中,BF=,故答案為:2.【考點】本題考查了平行線的性質(zhì)、角平分線的基本作圖、直角三角形30度角的性質(zhì),熟練掌握平行線和角平分線的基本作圖是關(guān)鍵.4、【解析】【分析】根據(jù)平行四邊形的性質(zhì)得到CD=AB=4,即C點坐標(biāo)為,進(jìn)而得到A點坐標(biāo)為,B點坐標(biāo)為,利用待定系數(shù)法即可求得函數(shù)解析式.【詳解】∵四邊形ABCD為平行四邊形∴CD=AB=4∴C點坐標(biāo)為∴A點坐標(biāo)為,B點坐標(biāo)為設(shè)函數(shù)解析式為,代入C點坐標(biāo)有解得∴函數(shù)解析式為,即故答案為.【考點】本題考查了平行四邊形的性質(zhì),和待定系數(shù)法求二次函數(shù)解析式,問題的關(guān)鍵是求出A點或B點的坐標(biāo).5、

,

或【解析】【分析】根據(jù)拋物線的對稱軸和拋物線與x軸一個交點求出另一個交點,再通過二次函數(shù)與方程的兩根,二次函數(shù)與不等式解集的關(guān)系求得答案.【詳解】∵拋物線的對稱軸為,拋物線與x軸一個交點為(5,0)∴拋物線與x軸另一個交點為(-1,0)∴方程的解為:,由圖像可知,不等式的解集為:或.故答案為:,;或.【考點】本題考查了二次函數(shù)的圖像性質(zhì),掌握二次函數(shù)與方程的兩根,二次函數(shù)與不等式的解集關(guān)系,是解決問題的關(guān)鍵.6、2≤a≤4.【解析】【分析】先求得拋物線的解析式,根據(jù)二次函數(shù)的性質(zhì)以及二次函數(shù)圖象上點的坐標(biāo)特征即可得到a的取值范圍.【詳解】解:∵二次函數(shù)y=-x2+mx+3過點(4,3),∴3=-16+4m+3,∴m=4,∴y=-x2+4x+3,∵y=-x2+4x+3=-(x-2)2+7,∴拋物線開口向下,對稱軸是x=2,頂點為(2,7),函數(shù)有最大值7,把y=3代入y=-x2+4x+3得3=-x2+4x+3,解得x=0或x=4,∵當(dāng)0≤x≤a時,y有最大值7,最小值3,∴2≤a≤4.故答案為:2≤a≤4.【考點】本題考查了待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)圖象上點的坐標(biāo)特征,熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.7、

或【解析】【分析】(1)首先利用的整數(shù)定義根據(jù)不等式確定其整數(shù)取值范圍,繼而利用取整函數(shù)定義精確求解x取值范圍.(2)本題可根據(jù)題意構(gòu)造新函數(shù),采取自變量分類討論的方式判別新函數(shù)的正負(fù),繼而根據(jù)函數(shù)性質(zhì)反求參數(shù).【詳解】(1)因為表示整數(shù),故當(dāng)時,的可能取值為0,1,2.當(dāng)取0時,;當(dāng)取1時,;當(dāng)=2時,.故綜上當(dāng)時,x的取值范圍為:.(2)令,,,由題意可知:,.①當(dāng)時,=,,在該區(qū)間函數(shù)單調(diào)遞增,故當(dāng)時,,得.②當(dāng)時,=0,不符合題意.③當(dāng)時,=1,,在該區(qū)間內(nèi)函數(shù)單調(diào)遞減,故當(dāng)取值趨近于2時,,得,當(dāng)時,,因為,故,符合題意.故綜上:或.【考點】本題考查函數(shù)的新定義取整函數(shù),需要有較強(qiáng)的題意理解能力,分類討論方法在此類型題目極為常見,根據(jù)不同區(qū)間函數(shù)單調(diào)性求解參數(shù)為常規(guī)題型,需要利用轉(zhuǎn)化思想將非常規(guī)題型轉(zhuǎn)化為常見題型.四、解答題1、(1);(2)存在,當(dāng)時,面積最大為16,此時點點坐標(biāo)為.【解析】【分析】(1)用待定系數(shù)法解答便可;(2)設(shè)點的坐標(biāo)為,連結(jié)、、.根據(jù)對稱性求出點B的坐標(biāo),根據(jù)得到二次函數(shù)關(guān)系式,最后配方求解即可.【詳解】解:(1)∵拋物線過點,∴.∵拋物線的對稱軸為直線,∴可設(shè)拋物線為.∵拋物線過點,∴,解得.∴拋物線的解析式為,即.(2)存在,設(shè)點的坐標(biāo)為,連結(jié)、、.∵點A、關(guān)于直線對稱,且∴.∴.∵∴當(dāng)時,面積最大為16,此時點點坐標(biāo)為.【考點】本題主要考查了二次函數(shù)的圖象與性質(zhì),待定系數(shù)法,三角形面積公式以及二次函數(shù)的最值求法,根據(jù)圖形得出由此得出二次函數(shù)關(guān)系式是解答此題的關(guān)鍵.2、(1)27(2)【解析】【分析】(1)根據(jù)t秒時,M、N兩點的運動路程,分別表示出AM、BM、BN、CN的長度,由S△DMN=S矩形ABCD-S△ADM-S△BMN-S△CDN進(jìn)行列式即可得到S關(guān)于t的函數(shù)關(guān)系式,通過配方即可求得最小值;(2)當(dāng)△DMN為直角三角形時,由∠MDN<90°,分∠NMD或∠MND為90°兩種情況進(jìn)行求解即可得.【詳解】(1)由題意,得AM=tcm,BN=2tcm,則BM=(6-t)cm,CN=(12-2t)cm,∵S△DMN=S矩形ABCD-S△ADM-S△BMN-S△CDN,∴S=12×6-×12t-(6-t)·2t-×6(12-2t)=t2-6t+36=(t-3)2+27,∵t=3在范圍0<t<6內(nèi),∴S的最小值為27cm2;(2)當(dāng)△DMN為直角三角形時,∵∠MDN<90°,∴可能∠NMD或∠MND為90°,當(dāng)∠NMD=90°時,DN2=DM2+MN2,∴(12-2t)2+62=122+t2+(6-t)2+(2t)2,解得t=0或-18,不在范圍0<t<6內(nèi),∴不可能;當(dāng)∠MND=90°時,DM2=DN2+MN2,∴122+t2=(12-2t)2+62+(6-t)2+(2t)2,解得t=或6,(6不在范圍0<t<6內(nèi)舍),∴S=(-3)2+27=cm2.【考點】本題考查了二次函數(shù)的應(yīng)用,涉及矩形的性質(zhì)、三角形面積、二次函數(shù)的性質(zhì)、勾股定理的應(yīng)用等知識,熟練掌握和靈活應(yīng)用相關(guān)知識是解題的關(guān)鍵.3、(1);(2)①連接交拋物線對稱軸于點,則點即為所求,點的坐標(biāo)為;②存在;點的坐標(biāo)為或.【解析】【分析】(1)由,得到A(-2,0),C(3,0),即可寫出拋物線的交點式.(2)①因為關(guān)于對稱軸

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論