中考數(shù)學(xué)總復(fù)習(xí)《 圓》全真模擬模擬題附答案詳解【綜合題】_第1頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》全真模擬模擬題附答案詳解【綜合題】_第2頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》全真模擬模擬題附答案詳解【綜合題】_第3頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》全真模擬模擬題附答案詳解【綜合題】_第4頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》全真模擬模擬題附答案詳解【綜合題】_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

中考數(shù)學(xué)總復(fù)習(xí)《圓》全真模擬模擬題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、已知圓的半徑為扇形的圓心角為,則扇形的面積為(

)A. B. C. D.2、如圖,⊙O的直徑垂直于弦,垂足為.若,,則的長是(

)A. B. C. D.3、如圖,⊙O的半徑為5cm,直線l到點(diǎn)O的距離OM=3cm,點(diǎn)A在l上,AM=3.8cm,則點(diǎn)A與⊙O的位置關(guān)系是(

)A.在⊙O內(nèi) B.在⊙O上 C.在⊙O外 D.以上都有可能4、如圖,是的內(nèi)接三角形,,是直徑,,則的長為()A.4 B. C. D.5、如圖,在△ABC中,∠ACB=90°,AC=BC,AB=4cm,CD是中線,點(diǎn)E、F同時(shí)從點(diǎn)D出發(fā),以相同的速度分別沿DC、DB方向移動(dòng),當(dāng)點(diǎn)E到達(dá)點(diǎn)C時(shí),運(yùn)動(dòng)停止,直線AE分別與CF、BC相交于G、H,則在點(diǎn)E、F移動(dòng)過程中,點(diǎn)G移動(dòng)路線的長度為(

)A.2 B.π C.2π D.π第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,△ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,I是△ABC的內(nèi)心,則∠BIA的度數(shù)是_______°.2、如圖,在中,半徑,是半徑上一點(diǎn),且.,是上的兩個(gè)動(dòng)點(diǎn),,是的中點(diǎn),則的長的最大值等于__________.3、如圖,拋物線的圖象與坐標(biāo)軸交于點(diǎn)、、,頂點(diǎn)為,以為直徑畫半圓交軸的正半軸于點(diǎn),圓心為,是半圓上的一動(dòng)點(diǎn),連接,是的中點(diǎn),當(dāng)沿半圓從點(diǎn)運(yùn)動(dòng)至點(diǎn)時(shí),點(diǎn)運(yùn)動(dòng)的路徑長是__________.4、已知的半徑為,直線與相交,則圓心到直線距離的取值范圍是__________.5、如圖所示是一個(gè)幾何體的三視圖,如果一只螞蟻從這個(gè)幾何體的點(diǎn)出發(fā),沿表面爬到的中點(diǎn)處,則最短路線長為__________.三、解答題(5小題,每小題10分,共計(jì)50分)1、已知P為⊙O上一點(diǎn),過點(diǎn)P作不過圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有點(diǎn)A、B(不與P、Q重合),連接AP、BP,若∠APQ=∠BPQ(1)如圖1,當(dāng)∠APQ=45°,AP=1,BP=2時(shí),求⊙O的半徑。(2)如圖2,連接AB,交PQ于點(diǎn)M,點(diǎn)N在線段PM上(不與P、M重合),連接ON、OP,設(shè)∠NOP=α,∠OPN=β,若AB平行于ON,探究α與β的數(shù)量關(guān)系。2、如下圖是一個(gè)隧道的橫截面,它的形狀是以點(diǎn)O為圓心的圓的一部分.如果M是中弦的中點(diǎn),經(jīng)過圓心O交圓O于點(diǎn)E,并且.求的半徑.3、我們知道,與三角形各邊都相切的圓叫做三角形的內(nèi)切圓,則三角形可以稱為圓的外切三角形.如圖1,與的三邊分別相切于點(diǎn)則叫做的外切三角形.以此類推,各邊都和圓相切的四邊形稱為圓外切四邊形.如圖2,與四邊形ABCD的邊AB,BC,CD,DA分別相切于點(diǎn)則四邊形叫做的外切四邊形.(1)如圖2,試探究圓外切四邊形的兩組對(duì)邊與之間的數(shù)量關(guān)系,猜想:(橫線上填“>”,“<”或“=”);(2)利用圖2證明你的猜想(寫出已知,求證,證明過程);(3)用文字?jǐn)⑹錾厦孀C明的結(jié)論:;(4)若圓外切四邊形的周長為相鄰的三條邊的比為,求此四邊形各邊的長.4、如圖,點(diǎn)A,B,C,D在⊙O上,=.求證:(1)AC=BD;(2)△ABE∽△DCE.5、如圖1,正方形ABCD中,點(diǎn)P、Q是對(duì)角線BD上的兩個(gè)動(dòng)點(diǎn),點(diǎn)P從點(diǎn)B出發(fā)沿著BD以1cm/s的速度向點(diǎn)D運(yùn)動(dòng);點(diǎn)Q同時(shí)從點(diǎn)D出發(fā)沿著DB以2cm的速度向點(diǎn)B運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為xs,△AQP的面積為ycm2,y與x的函數(shù)圖象如圖2所示,根據(jù)圖象回答下列問題:(1)a=.(2)當(dāng)x為何值時(shí),APQ的面積為6cm2;(3)當(dāng)x為何值時(shí),以PQ為直徑的圓與APQ的邊有且只有三個(gè)公共點(diǎn).-參考答案-一、單選題1、B【解析】【分析】扇形面積公式為:利用公式直接計(jì)算即可得到答案.【詳解】解:圓的半徑為扇形的圓心角為,故選:【考點(diǎn)】本題考查的是扇形的面積的計(jì)算,掌握扇形的面積的計(jì)算公式是解題的關(guān)鍵.2、C【解析】【分析】根據(jù)直角三角形的性質(zhì)可求出CE=1,再根據(jù)垂徑定理可求出CD.【詳解】解:∵⊙O的直徑垂直于弦,∴∵,,∴CE=1∴CD=2.故選:C.【考點(diǎn)】本題考查了直角三角形的性質(zhì),垂徑定理等知識(shí)點(diǎn),能求出CE=DE是解此題的關(guān)鍵.3、A【解析】【詳解】如圖,連接OA,則在直角△OMA中,根據(jù)勾股定理得到OA=.∴點(diǎn)A與⊙O的位置關(guān)系是:點(diǎn)A在⊙O內(nèi).故選A.4、B【解析】【分析】連接BO,根據(jù)圓周角定理可得,再由圓內(nèi)接三角形的性質(zhì)可得OB垂直平分AC,再根據(jù)正弦的定義求解即可.【詳解】如圖,連接OB,∵是的內(nèi)接三角形,∴OB垂直平分AC,∴,,又∵,∴,∴,又∵AD=8,∴AO=4,∴,解得:,∴.故答案選B.【考點(diǎn)】本題主要考查了圓的垂徑定理的應(yīng)用,根據(jù)圓周角定理求角度是解題的關(guān)鍵.5、D【解析】【分析】【詳解】解:如圖,∵CA=CB,∠ACB=90°,AD=DB,∴CD⊥AB,∴∠ADE=∠CDF=90°,CD=AD=DB,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴∠DAE=∠DCF,∵∠AED=∠CEG,∴∠ADE=∠CGE=90°,∴A、C、G、D四點(diǎn)共圓,∴點(diǎn)G的運(yùn)動(dòng)軌跡為弧CD,∵AB=4,ABAC,∴AC=2,∴OA=OC,∵DA=DC,OA=OC,∴DO⊥AC,∴∠DOC=90°,∴點(diǎn)G的運(yùn)動(dòng)軌跡的長為π.故選:D.二、填空題1、135【解析】【分析】先根據(jù)直徑所對(duì)的圓周角是直角得出,進(jìn)而求出,再根據(jù)內(nèi)心是三角形內(nèi)角平分線的交點(diǎn)得出,最后利用三角形的內(nèi)角和定理即得.【詳解】∵AB是⊙O的直徑∴∴∵I是△ABC的內(nèi)心∴IA、IB是角平分線∴∴故答案為:135.【考點(diǎn)】本題考查圓周角定理、內(nèi)心、角平分線的定義及三角形內(nèi)角和定理,解題關(guān)鍵是熟知:直徑所對(duì)的圓周角為直角;三角形的內(nèi)心是內(nèi)角平分線的交點(diǎn).2、【解析】【分析】當(dāng)點(diǎn)F與點(diǎn)D運(yùn)動(dòng)至共線時(shí),OF長度最大,此時(shí)F是AB的中點(diǎn),則OF⊥AB,設(shè)OF為x,則DF=x﹣4,在Rt△BOF中,利用勾股定理進(jìn)行求解即可.【詳解】∵當(dāng)點(diǎn)F與點(diǎn)D運(yùn)動(dòng)至共線時(shí),OF長度最大,如圖所示,∵F是AB的中點(diǎn),∴OC⊥AB,設(shè)OF為x,則DF=x﹣4,∵△ABD是等腰直角三角形,∴DF=AB=BF=x﹣4,在Rt△BOF中,OB2=OF2+BF2,∵OB=OC=6,∴,解得,或(舍去),∴OF的長的最大值等于,故答案為:.【考點(diǎn)】本題考查了垂徑定理,直角三角形斜邊中線的性質(zhì),勾股定理等知識(shí),確定點(diǎn)F與點(diǎn)D運(yùn)動(dòng)至共線時(shí),OF長度最大是解題的關(guān)鍵.3、【解析】【分析】先求出A、B、E的坐標(biāo),然后求出半圓的直徑為4,由于E為定點(diǎn),P是半圓AB上的動(dòng)點(diǎn),N為EP的中點(diǎn),所以N的運(yùn)動(dòng)路經(jīng)為直徑為2的半圓,計(jì)算即可.【詳解】解:,∴點(diǎn)E的坐標(biāo)為(1,-2),令y=0,則,解得,,,∴A(-1,0),B(3,0),∴AB=4,由于E為定點(diǎn),P是半圓AB上的動(dòng)點(diǎn),N為EP的中點(diǎn),所以N的運(yùn)動(dòng)路經(jīng)為直徑為2的半圓,如圖,∴點(diǎn)運(yùn)動(dòng)的路徑長是.【考點(diǎn)】本題屬于二次函數(shù)和圓的綜合問題,考查了運(yùn)動(dòng)路徑的問題,熟練掌握二次函數(shù)和圓的基礎(chǔ)是解題的關(guān)鍵.4、【解析】【分析】根據(jù)直線AB和圓相交,則圓心到直線的距離小于圓的半徑即可得問題答案.【詳解】∵⊙O的半徑為5,直線AB與⊙O相交,∴圓心到直線AB的距離小于圓的半徑,即0≤d<5;故答案為:0≤d<5.【考點(diǎn)】本題考查了直線與圓的位置關(guān)系;熟記直線和圓的位置關(guān)系與數(shù)量之間的聯(lián)系是解決問題的關(guān)鍵.同時(shí)注意圓心到直線的距離應(yīng)是非負(fù)數(shù).5、【解析】【分析】將圓錐的側(cè)面展開,設(shè)頂點(diǎn)為B',連接BB',AE.線段AC與BB'的交點(diǎn)為F,線段BF是最短路程.【詳解】如圖將圓錐側(cè)面展開,得到扇形ABB′,則線段BF為所求的最短路程.設(shè)∠BAB′=n°.∵=4,∴n=120即∠BAB′=120°.∵E為弧BB′中點(diǎn),∴∠AFB=90°,∠BAF=60°,∴BF=AB?sin∠BAF=6×=,∴最短路線長為.故答案為:.【考點(diǎn)】本題考查了平面展開?最短路徑問題,解題時(shí)注意把立體圖形轉(zhuǎn)化為平面圖形的思維.三、解答題1、(1);(2)α+2β=90°,見解析【解析】【分析】(1)連接AB,由已知得到∠APB=∠APQ+BPQ=90°,根據(jù)圓周角定理證得AB是⊙O的直徑,然后根據(jù)勾股定理求得直徑,即可求得半徑;(2)連接OA、OB、OQ,由證得∠APQ=∠BPQ,即可證得OQ⊥ON,然后根據(jù)三角形內(nèi)角和定理證得2∠OPN+∠PON+∠NOQ=180°,,即可證得α+2β=90°.【詳解】(1)連接AB,∵∠APQ=∠BPQ=45°,∴∠APB=∠APQ+BPQ=90°,∴AB是⊙O的直徑,∴AB=,∴⊙O的半徑為;(2)α+2β=90°,證明:連接OA、OB、OQ,∵∠APQ=∠BPQ,∴,∴∠AOQ=∠BOQ,∵OA=OB,∴OQ⊥AB,∵ON∥AB,∴NO⊥OQ,∴∠NOQ=90°,∵OP=OQ,∴∠OPN=∠OQP,∵∠OPN+∠OQP+∠PON+∠NOQ=180°,∴2∠OPN+∠PON+∠NOQ=180°,∴∠NOP+2∠OPN=90°,∵∠NOP=α,∠OPN=β,∴α+2β=90°.【解答】解:【點(diǎn)評(píng)】本題考查了圓周角定理,垂徑定理,熟練掌握性質(zhì)定理是解題的關(guān)鍵.2、【解析】【分析】連接CO,利用垂徑定理求解再令⊙O的半徑為rm,利用勾股定理建立方程求解半徑即可得到答案.【詳解】解:連接CO.∵M(jìn)是弦CD的中點(diǎn),且EM經(jīng)過圓心O,∴EM⊥CD,且CM=CD=×4=2.在Rt△OCM中,令⊙O的半徑為rm,∵OC2=OM2+CM2,∴,解得:r=.【考點(diǎn)】本題考查的是垂徑定理的應(yīng)用,勾股定理的應(yīng)用,掌握利用垂徑定理構(gòu)建直角三角形是解題的關(guān)鍵.3、(1)=;(2)答案見解析;(3)圓外切四邊形的對(duì)邊之和相等;(4)4;10;12;6【解析】【分析】(1)根據(jù)圓外切四邊形的定義猜想得出結(jié)論;(2)根據(jù)切線長定理即可得出結(jié)論;(3)由(2)可得出答案;(4)根據(jù)圓外切四邊形的性質(zhì)求出第四邊,利用周長建立方程求解即可得出結(jié)論.【詳解】(1)∵⊙O與四邊形ABCD的邊AB,BC,CD,DA分別相切于點(diǎn)E,F(xiàn),G,H,∴猜想AB+CD=AD+BC,故答案為:=.(2)已知:四邊形ABCD的四邊AB,BC,CD,DA都于⊙O相切于G,F(xiàn),E,H,求證:AD+BC=AB+CD,證明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圓外切四邊形的對(duì)邊和相等.(3)由(2)可知:圓外切四邊形的對(duì)邊和相等.故答案為:圓外切四邊形的對(duì)邊和相等;(4)∵相鄰的三條邊的比為2:5:6,∴設(shè)此三邊為2x,5x,6x,根據(jù)圓外切四邊形的性質(zhì)得,第四邊為2x+6x?5x=3x,∵圓外切四邊形的周長為32,∴2x+5x+6x+3x=16x=32,∴x=2,∴此四邊形的四邊的長為2x=4,5x=10,6x=12,3x=6.即此四邊形各邊的長為:4,10,12,6.【考點(diǎn)】此題是圓的綜合題,主要考查了新定義圓的外切四邊形的性質(zhì),四邊形的周長,切線長定理,理解和掌握?qǐng)A外切四邊形的定義是解本題的關(guān)鍵.4、(1)見解析(2)見解析【解析】【分析】(1)兩個(gè)等弧同時(shí)加上一段弧后兩弧仍然相等;再通過同弧所對(duì)的弦相等證明即可;(2)根據(jù)同弧所對(duì)的圓周角相等,對(duì)頂角相等即可證明相似.(1)∵=∴=∴∴BD=AC(2)∵∠B=∠C;∠AEB=∠DEC∴△ABE∽△DCE【考點(diǎn)】本題考查等弧所對(duì)弦相等、所對(duì)圓周角相等,掌握這些是本題關(guān)鍵.5、(1)9;(2)x或x=4;(3)x=0或x<2或2<x≤3【解析】【分析】(1)由題意可得Q運(yùn)動(dòng)3s達(dá)到B,即得BD=6,可知,從而a=AB?AD=9;(2)連接AC交BD于O,可得OA=AC=BD=3,根據(jù)△APQ的面積為6,即得PQ=4,當(dāng)P在Q下面時(shí),x=,當(dāng)P在Q上方時(shí),Q運(yùn)動(dòng)3s到B,x=4;(3)當(dāng)x=0時(shí),B與P重合,D與Q重合,此時(shí)以PQ為直徑的圓與△APQ的邊有且只有三個(gè)公共點(diǎn),同理t=6時(shí),以PQ為直徑的圓與△APQ的邊有且只有三個(gè)公共點(diǎn),當(dāng)Q運(yùn)動(dòng)到BD中點(diǎn)時(shí),以PQ為直徑的圓與AQ相切,與△APQ的邊有且只有三個(gè)公共點(diǎn),x=,當(dāng)P、Q重合時(shí),不構(gòu)成三角形和圓,此時(shí)x=2,當(dāng)Q運(yùn)動(dòng)到B,恰好P運(yùn)動(dòng)到BD中點(diǎn),x=3,以PQ為直徑的圓與△APQ的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論