版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
中考數(shù)學總復習《圓》考前沖刺練習試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,是的弦,點在過點的切線上,,交于點.若,則的度數(shù)等于(
)A. B. C. D.2、如圖,在△ABC中,∠ACB=90°,AC=BC,AB=4cm,CD是中線,點E、F同時從點D出發(fā),以相同的速度分別沿DC、DB方向移動,當點E到達點C時,運動停止,直線AE分別與CF、BC相交于G、H,則在點E、F移動過程中,點G移動路線的長度為(
)A.2 B.π C.2π D.π3、如圖,在?ABCD中,為的直徑,⊙O和相切于點E,和相交于點F,已知,,則的長為(
)A. B. C. D.24、在平面直角坐標系xOy中,已知點A(4,3),以原點O為圓心,5為半徑作⊙O,則()A.點A在⊙O上B.點A在⊙O內C.點A在⊙O外D.點A與⊙O的位置關系無法確定5、如圖,△ABC內接于⊙O,∠A=50°.E是邊BC的中點,連接OE并延長,交⊙O于點D,連接BD,則∠D的大小為()A.55° B.65° C.60° D.75°第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、劉徽是我國魏晉時期卓越的數(shù)學家,他在《九章算術》中提出了“割圓術”,利用圓的內接正多邊形逐步逼近圓來近似計算圓的面積,如圖,若用圓的內接正十二邊形的面積來近似估計的面積,設的半徑為1,則__________.2、如圖,矩形ABCD的對角線交于點O,以點A為圓心,AB的長為半徑畫弧,剛好過點O,以點D為圓心,DO的長為半徑畫弧,交AD于點E,若AC=2,則圖中陰影部分的面積為_____.(結果保留π)3、如圖1,將一個正三角形繞其中心最少旋轉,所得圖形與原圖的重疊部分是正六邊形;如圖2,將一個正方形繞其中心最少旋轉45°,所得圖形與原圖形的重疊部分是正八邊形;依此規(guī)律,將一個正七邊形繞其中心最少旋轉______,所得圖形與原圖的重疊部分是正多邊形.在圖2中,若正方形的邊長為,則所得正八邊形的面積為_______.4、如圖,將三角形AOC繞點O順時針旋轉120°得三角形BOD,已知OA=4,OC=1,那么圖中陰影部分的面積為_____.(結果保留π)5、如圖,是的直徑,弦于點E,,,則的半徑_______.三、解答題(5小題,每小題10分,共計50分)1、如圖,正方形ABCD的外接圓為⊙O,點P在劣弧CD上(不與C點重合).(1)求∠BPC的度數(shù);(2)若⊙O的半徑為8,求正方形ABCD的邊長.2、用反證法證明:一條線段只有一個中點.3、如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,點O在AB上,以點O為圓心,OB為半徑的圓經過點D,交BC于點E(1)求證:AC是⊙O的切線;(2)若OB=2,CD=,求圖中陰影部分的面積(結果保留).4、如圖,兩個圓都以點O為圓心,大圓的弦交小圓于兩點.求證:.5、如圖1,正五邊形內接于⊙,閱讀以下作圖過程,并回答下列問題,作法:如圖2,①作直徑;②以F為圓心,為半徑作圓弧,與⊙交于點M,N;③連接.(1)求的度數(shù).(2)是正三角形嗎?請說明理由.(3)從點A開始,以長為半徑,在⊙上依次截取點,再依次連接這些分點,得到正n邊形,求n的值.-參考答案-一、單選題1、B【解析】【分析】根據題意可求出∠APO、∠A的度數(shù),進一步可得∠ABO度數(shù),從而推出答案.【詳解】∵,∴∠APO=70°,∵,∴∠AOP=90°,∴∠A=20°,又∵OA=OB,∴∠ABO=20°,又∵點C在過點B的切線上,∴∠OBC=90°,∴∠ABC=∠OBC?∠ABO=90°?20°=70°,故答案為:B.【考點】本題考查的是圓切線的運用,熟練掌握運算方法是關鍵.2、D【解析】【分析】【詳解】解:如圖,∵CA=CB,∠ACB=90°,AD=DB,∴CD⊥AB,∴∠ADE=∠CDF=90°,CD=AD=DB,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴∠DAE=∠DCF,∵∠AED=∠CEG,∴∠ADE=∠CGE=90°,∴A、C、G、D四點共圓,∴點G的運動軌跡為弧CD,∵AB=4,ABAC,∴AC=2,∴OA=OC,∵DA=DC,OA=OC,∴DO⊥AC,∴∠DOC=90°,∴點G的運動軌跡的長為π.故選:D.3、C【解析】【分析】首先求出圓心角∠EOF的度數(shù),再根據弧長公式,即可解決問題.【詳解】解:如圖連接OE、OF,∵CD是⊙O的切線,∴OE⊥CD,∴∠OED=90°,∵四邊形ABCD是平行四邊形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°-∠D-∠DFO-∠DEO=30°,∴的長.故選:C.【考點】本題考查切線的性質、平行四邊形的性質、弧長公式等知識,解題的關鍵是求出圓心角的度數(shù),記住弧長公式.4、A【解析】【分析】先求出點A到圓心O的距離,再根據點與圓的位置依據判斷可得.【詳解】解:∵點A(4,3)到圓心O的距離,∴OA=r=5,∴點A在⊙O上,故選:A.【考點】本題考查了對點與圓的位置關系的判斷.關鍵要記住若半徑為,點到圓心的距離為,則有:當時,點在圓外;當時,點在圓上,當時,點在圓內,也考查了勾股定理的應用.5、B【解析】【分析】連接CD,根據圓內接四邊形的性質得到∠CDB=180°﹣∠A=130°,根據垂徑定理得到OD⊥BC,求得BD=CD,根據等腰三角形的性質即可得到結論.【詳解】解:連接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是邊BC的中點,∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODC=∠BDC=65°,故選:B.【考點】本題考查了圓內接四邊形的性質,垂徑定理,等腰三角形的性質等知識.正確理解題意是解題的關鍵.二、填空題1、【解析】【分析】如圖,過點A作AC⊥OB,垂足為C,先求出圓的面積,再求出△ABC面積,繼而求得正十二邊形的面積即可求得答案.【詳解】如圖,過點A作AC⊥OB,垂足為C,∵的半徑為1,∴的面積,OA=OB=1,∴圓的內接正十二邊形的中心角為∠AOB=,∴AC=OB=,∴S△AOB=OB?AC=,∴圓的內接正十二邊形的面積S1=12S△AOB=3,∴則,故答案為.【考點】本題考查了正多邊形與圓,正確的求出正十二邊形的面積是解題的關鍵.2、【解析】【分析】由圖可知,陰影部分的面積是扇形ABO和扇形DEO的面積之和,然后根據題目中的數(shù)據,可以求得AB、OA、DE的長,∠BAO和∠EDO的度數(shù),從而可以解答本題.【詳解】解:∵四邊形ABCD是矩形,∴OA=OC=OB=OD,∵AB=AO,∴△ABO是等邊三角形,∴∠BAO=60°,∴∠EDO=30°,∵AC=2,∴OA=OD=1,∴圖中陰影部分的面積為:,故答案為:.【考點】本題主要考查扇形面積、矩形的性質及等邊三角形的性質與判定,熟練掌握扇形面積、矩形的性質及等邊三角形的性質與判定是解題的關鍵.3、
【解析】【分析】根據題意,可以發(fā)現(xiàn)正n邊形繞其中心最少旋轉,所得圖形與原圖的重疊部分是正2n邊形;旋轉后的正八變形相當于將正方形剪掉了的4個全等的等腰直角三角形,設等腰直角三角形的邊長為x,則正八邊形的邊長為x;然后根據x+x+x=4求得x;最后用正方形的面積減去這八個等腰直角三角形的面積即可.【詳解】解:由題意得:正n邊形繞其中心最少旋轉,所得圖形與原圖的重疊部分是正2n邊形;則將一個正七邊形繞其中心最少旋轉所得圖形與原圖的重疊部分是正多邊形;由題意得:旋轉后的正八變形相當于將正方形剪掉了的4個全等的等腰直角三角形,設等腰直角三角形的邊長為x,則正八邊形的邊長為x∴x+x+x=4,解得x=4-2∴減去的每個等腰直角三角形的面積為:∴正八邊形的面積為:正方形的面積-4×等腰直角三角形的面積=4×4-4()=.故答案為,.【考點】本題考查了旋轉變換、圖形規(guī)律以及勾股定理等知識,根據題意找到旋轉規(guī)律是解答本題的關鍵.4、5π【解析】【分析】根據旋轉的性質可以得到陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積,利用扇形的面積公式計算即可求解.【詳解】∵△AOC≌△BOD,∴陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積5π.故答案為5π.【考點】本題考查了旋轉的性質以及扇形的面積公式,正確理解:陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積是解題的關鍵.5、【解析】【分析】設半徑為r,則,得到,由垂徑定理得到,再根據勾股定理,即可求出答案.【詳解】解:由題意,設半徑為r,則,∵,∴,∵是的直徑,弦于點E,∴點E是CD的中點,∵,∴,在直角△OCE中,由勾股定理得,即,解得:.故答案為:.【考點】本題考查了垂徑定理,勾股定理,解題的關鍵是熟練掌握垂徑定理和勾股定理進行解題.三、解答題1、(1)45°;(2)8【解析】【詳解】試題分析:(1)連接OB,OC,由正方形的性質知,是等腰直角三角形,根據,由圓周角定理可以求出;(2)過點O作OE⊥BC于點E,由等腰直角三角形的性質可知OE=BE,由垂徑定理可知BC=2BE,故可得出結論.試題解析:(1)連接OB,OC,∵四邊形ABCD為正方形,∴∠BOC=90°,∴∠P=∠BOC=45°;(2)過點O作OE⊥BC于點E,∵OB=OC,∠BOC=90°,∴∠OBE=45°,∴OE=BE,∵OE2+BE2=OB2,∴BE=,∴BC=2BE=2×.點睛:垂徑定理:垂直于弦的直徑平分弦并且平分弦所對的兩條弧.2、見解析.【解析】【分析】首先假設結論的反面:一條線段可以有多個中點,不妨設有兩個,根據中點的定義得出矛盾,即可證得.【詳解】解:已知:一條線段,點M為的中點.求證:線段只有一個中點M,證明:假設線段有兩個中點,分別為點M、N,不妨設點M在點N的左邊,則,又∵,這與矛盾,∴假設不成立,線段只有一個中點M.∴一條線段只有一個中點.【考點】本題主要考查了反證法,正確理解反證法的基本思想是解題的關鍵.3、(1)見解析;(2)【解析】【分析】(1)欲證明AC是⊙O的切線,只要證明OD⊥AC即可.(2)證明△OBE是等邊三角形即可解決問題.【詳解】(1)證明:連接OD,如圖,∵BD為∠ABC平分線,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,∴OD⊥AC,∴AC是⊙O的切線.(2)過O作OG⊥BC,連接OE,則四邊形ODCG為矩形,∴GC=OD=OB=2,OG=CD=,在Rt△OBG中,利用勾股定理得:BG=1,∴BE=2,則△OBE是等邊三角形,∴陰影部分面積為﹣×2×=.【考點】本題考查切線的判定和性質,等邊三角形的判定和性質,思想的面積公式等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.4、見解析【解析】【分析】過點O作OP⊥AB,由等腰三角形的性質可知AP=BP,再由垂徑定理可知CP=DP,故可得出結論.【詳解】證明:如圖所示,過點O作OP⊥AB,垂足為點P,由垂徑定理可得PA=PB,PC=PD,PA-PC=PB-PD,AC=BD.【考點】本題考查的是垂徑定理,根據題意作出輔助線,利用垂徑定理求解是解答此題的關鍵.5、(1)(2)是正三角形,理由見解析(3)【解析】【分析】(1)根據正五
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)老院安全巡查制度
- 企業(yè)員工培訓與技能發(fā)展計劃目標制度
- 企業(yè)內部保密工作培訓制度
- 養(yǎng)雞銷售培訓課件
- 會議議程調整與臨時決策制度
- 2026福建南平市旭輝實驗學校招聘教師2人備考題庫附答案
- 2026福建漳龍集團有限公司面向集團競聘權屬地產集團兩個副總經理崗位2人備考題庫附答案
- 公共交通線路規(guī)劃管理制度
- 2026重慶北碚區(qū)教育事業(yè)單位面向應屆畢業(yè)生招聘31人參考題庫附答案
- 2026陽春農商銀行校園招聘考試備考題庫附答案
- 江南大學介紹
- 兒科氧療護理實踐指南(2025年版)
- 2025年《思想道德與法治》期末考試題庫(濃縮500題)
- 化工設備培訓
- D500-D505 2016年合訂本防雷與接地圖集
- 國家開放大學電大??啤毒W絡信息編輯》期末試題標準題庫及答案(試卷號:2489)
- GB/T 20914.1-2007沖模氮氣彈簧第1部分:通用規(guī)格
- FZ/T 90086-1995紡織機械與附件下羅拉軸承和有關尺寸
- 登桿培訓材料課件
- TCECS 10158-2021 天冬聚脲美縫劑
- 2019版外研社高中英語必選擇性必修一單詞表
評論
0/150
提交評論