版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》綜合練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖所示,公路AC、BC互相垂直,點(diǎn)M為公路AB的中點(diǎn),為測(cè)量湖泊兩側(cè)C、M兩點(diǎn)間的距離,若測(cè)得AB的長(zhǎng)為6km,則M、C兩點(diǎn)間的距離為()A.2.5km B.4.5km C.5km D.3km2、如圖,把一張長(zhǎng)方形紙片ABCD沿對(duì)角線AC折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)B′,AB′與DC相交于點(diǎn)E,則下列結(jié)論正確的是()A.∠DAB′=∠CAB′ B.∠ACD=∠B′CDC.AD=AE D.AE=CE3、如圖,菱形ABCD的邊長(zhǎng)為6cm,∠BAD=60°,將該菱形沿AC方向平移2cm得到四邊形A′B′C′D′,A′D′交CD于點(diǎn)E,則點(diǎn)E到AC的距離為()A.1 B. C..2 D.24、如圖,以O(shè)為圓心,長(zhǎng)為半徑畫弧別交于A、B兩點(diǎn),再分別以A、B為圓心,以長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)C,分別連接、,則四邊形一定是()A.梯形 B.菱形 C.矩形 D.正方形5、如圖,的對(duì)角線交于點(diǎn)O,E是CD的中點(diǎn),若,則的值為()A.2 B.4 C.8 D.16第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在△ABC中,∠ACB=90°,以AC,BC和AB為邊向上作正方形ACED和正方形BCMI和正方形ABGF,點(diǎn)G落在MI上,若AC+BC=7,空白部分面積為16,則圖中陰影部分的面積是_____.2、如圖,正方形的邊長(zhǎng)為4,它的兩條對(duì)角線交于點(diǎn),過點(diǎn)作邊的垂線,垂足為,的面積為,過點(diǎn)作的垂線,垂足為,△的面積為,過點(diǎn)作的垂線,垂足為,△的面積為,△的面積為,那么__,則__.3、如圖,正方形ABCD的面積為18,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線AC上有一點(diǎn)P,使PD+PE的和最小,則這個(gè)最小值為_____.4、如圖,在矩形ABCD中,AD=3AB,點(diǎn)G,H分別在AD,BC上,連BG,DH,且,當(dāng)=_______時(shí),四邊形BHDG為菱形.5、如圖,在矩形ABCD中,AB=3,BC=4,點(diǎn)P是對(duì)角線AC上一點(diǎn),若點(diǎn)P、A、B組成一個(gè)等腰三角形時(shí),△PAB的面積為___________.三、解答題(5小題,每小題10分,共計(jì)50分)1、(1)如圖a,矩形ABCD的對(duì)角線AC、BD交于點(diǎn)O,過點(diǎn)D作DP∥OC,且DP=OC,連接CP,判斷四邊形CODP的形狀并說明理由.
(2)如圖b,如果題目中的矩形變?yōu)榱庑?,結(jié)論應(yīng)變?yōu)槭裁??說明理由.(3)如圖c,如果題目中的矩形變?yōu)檎叫危Y(jié)論又應(yīng)變?yōu)槭裁??說明理由.2、已知:如圖,在四邊形中,,.求證:(1)BECD;(2)四邊形是矩形.3、綜合與實(shí)踐(1)如圖1,在正方形ABCD中,點(diǎn)M、N分別在AD、CD上,若∠MBN=45°,則MN,AM,CN的數(shù)量關(guān)系為.(2)如圖2,在四邊形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,點(diǎn)M、N分別在AD、CD上,若∠MBN=∠ABC,試探索線段MN、AM、CN有怎樣的數(shù)量關(guān)系?請(qǐng)寫出猜想,并給予證明.(3)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點(diǎn)M、N分別在DA、CD的延長(zhǎng)線上,若∠MBN=∠ABC,試探究線段MN、AM、CN的數(shù)量關(guān)系為.4、如圖,在平行四邊形中,連接.(1)請(qǐng)用尺規(guī)完成基本作圖:在上方作,使,射線交于點(diǎn)F,在線段上截取,使.(2)連接,求證:四邊形是菱形.5、如圖所示,在邊長(zhǎng)為1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D兩點(diǎn)的一動(dòng)點(diǎn),N是CD上一動(dòng)點(diǎn),且AM+CN=1.(1)證明:無論M,N怎樣移動(dòng),△BMN總是等邊三角形;(2)求△BMN面積的最小值.-參考答案-一、單選題1、D【解析】【詳解】根據(jù)直角三角形斜邊上的中線性質(zhì)得出CM=AB,即可求出CM.【解答】解:∵公路AC,BC互相垂直,∴∠ACB=90°,∵M(jìn)為AB的中點(diǎn),∴CM=AB,∵AB=6km,∴CM=3km,即M,C兩點(diǎn)間的距離為3km,故選:D.【點(diǎn)睛】本題考查了直角三角形的性質(zhì),解題關(guān)鍵是掌握直角三角形斜邊上的中線的性質(zhì):直角三角形斜邊上的中線等于斜邊的一半.2、D【解析】【分析】根據(jù)翻折變換的性質(zhì)可得∠BAC=∠CAB′,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠BAC=∠ACD,從而得到∠ACD=∠CAB′,然后根據(jù)等角對(duì)等邊可得AE=CE,從而得解.【詳解】解:∵矩形紙片ABCD沿對(duì)角線AC折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,∴結(jié)論正確的是D選項(xiàng).故選D.【點(diǎn)睛】本題考查了翻折變換的性質(zhì),平行線的性質(zhì),矩形的對(duì)邊互相平行,等角對(duì)等邊的性質(zhì),熟記各性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.3、C【解析】【分析】根據(jù)題意連接BD,過點(diǎn)E作EF⊥AC于點(diǎn)F,根據(jù)菱形的性質(zhì)可以證明三角形ABD是等邊三角形,根據(jù)平移的性質(zhì)可得AD∥A′E,可得,,進(jìn)而求出A′E,再利用30度角所對(duì)直角邊等于斜邊的一半即可得出結(jié)論.【詳解】解:如圖,連接BD,過點(diǎn)E作EF⊥AC于點(diǎn)F,∵四邊形ABCD是菱形,∴AD=AB,BD⊥AC,∵∠BAD=60°,∴三角形ABD是等邊三角形,∵菱形ABCD的邊長(zhǎng)為6cm,∴AD=AB=BD=6cm,∴AG=GC=3(cm),∴AC=6(cm),∵AA′=2(cm),∴A′C=4(cm),∵AD∥A′E,∴,∴,∴A′E=4(cm),∵∠EA′F=∠DAC=∠DAB=30°,∴EF=A′E=2(cm).故選:C.【點(diǎn)睛】本題考查菱形的性質(zhì)以及等邊三角形的判定與性質(zhì)和平移的性質(zhì),解決本題的關(guān)鍵是掌握菱形的性質(zhì).4、B【解析】【分析】根據(jù)題意得到,然后根據(jù)菱形的判定方法求解即可.【詳解】解:由題意可得:,∴四邊形是菱形.故選:B.【點(diǎn)睛】此題考查了菱形的判定,解題的關(guān)鍵是熟練掌握菱形的判定方法.菱形的判定定理:①四條邊都相等四邊形是菱形;②一組鄰邊相等的平行四邊形是菱形;③對(duì)角線垂直的平行四邊形是菱形.5、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)可得,S△BOC=S△AOD=S△COD=S△AOB=8,再根據(jù)三角形的中線平分三角形的面積可得根據(jù)三角形的中線平分三角形的面積可得S△DOE=4,進(jìn)而可得答案.【詳解】解:∵四邊形ABCD是平行四邊形,,∴S△BOC=S△AOD=S△COD=S△AOB=8,∵點(diǎn)E是CD的中點(diǎn),∴S△DOE=S△COD=4,故選:B.【點(diǎn)睛】此題主要考查了平行四邊形的性質(zhì),以及三角形中線的性質(zhì),掌握平行四邊形的性質(zhì),三角形的中線平分三角形的面積是解答本題的關(guān)鍵.二、填空題1、【解析】【分析】根據(jù)余角的性質(zhì)得到,根據(jù)全等三角形的性質(zhì)得到,推出,根據(jù)勾股定理得到,解方程組得到,接著由圖可知空白部分為重疊部分,陰影部分為非重疊部分,所以2倍的空白部分與陰影部分面積和等于三個(gè)正方形與三角形面積和.結(jié)合即可得出結(jié)論.依此即可求解.【詳解】解:如圖,四邊形是正方形,,,,,,,∵,即,,在中,,,,,,,陰影部分的面積和=三個(gè)正方形面積+三角形面積-2倍空白部分面積=.故答案為:.【點(diǎn)睛】本題考查勾股定理的知識(shí),有一定難度,解題關(guān)鍵是將勾股定理和正方形的面積公式進(jìn)行靈活的結(jié)合和應(yīng)用.2、【解析】【分析】由正方形的性質(zhì)得出、、、、,,得出規(guī)律,再求出它們的和即可.【詳解】解:四邊形是正方形,,,,,,,,,,,;故答案為:;.【點(diǎn)睛】本題是圖形的變化題,考查了正方形的性質(zhì)、三角形面積的計(jì)算,解題的關(guān)鍵是通過計(jì)算三角形的面積得出規(guī)律.3、【解析】【分析】由正方形的對(duì)稱性可知,PB=PD,當(dāng)B、P、E共線時(shí)PD+PE最小,求出BE即可.【詳解】解:∵正方形中B與D關(guān)于AC對(duì)稱,∴PB=PD,∴PD+PE=PB+PE=BE,此時(shí)PD+PE最小,∵正方形ABCD的面積為18,△ABE是等邊三角形,∴BE=3,∴PD+PE最小值是3,故答案為:3.【點(diǎn)睛】本題考查軸對(duì)稱求最短距離,熟練掌握正方形的性質(zhì)是解題的關(guān)鍵.4、【解析】【分析】設(shè)則再利用矩形的性質(zhì)建立方程求解從而可得答案.【詳解】解:四邊形BHDG為菱形,設(shè)AD=3AB,設(shè)則矩形ABCD,解得:故答案為:【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,矩形的性質(zhì),菱形的性質(zhì),利用圖形的性質(zhì)建立方程確定之間的關(guān)系是解本題的關(guān)鍵.5、或或3【解析】【分析】過B作BM⊥AC于M,根據(jù)矩形的性質(zhì)得出∠ABC=90°,根據(jù)勾股定理求出AC,根據(jù)三角形的面積公式求出高BM,分為三種情況:①AB=BP=3,②AB=AP=3,③AP=BP,分別畫出圖形,再求出面積即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,由勾股定理得:,有三種情況:①當(dāng)AB=BP=3時(shí),如圖1,過B作BM⊥AC于M,S△ABC=,,解得:,∵AB=BP=3,BM⊥AC,∴,∴AP=AM+PM=,∴△PAB的面積=;②當(dāng)AB=AP=3時(shí),如圖2,∵BM=,∴△PAB的面積S=;③作AB的垂直平分線NQ,交AB于N,交AC于P,如圖3,則AP=BP,BN=AN=,∵四邊形ABCD是矩形,NQ⊥AC,∴PN∥BC,∵AN=BN,∴AP=CP,∴,∴△PAB的面積;即△PAB的面積為或或3.故答案為:或或3.【點(diǎn)睛】本題主要是考查了矩形的性質(zhì)、等腰三角形的判定以及勾股定理求邊長(zhǎng),熟練掌握矩形的性質(zhì),利用等腰三角形的判定,分成三種情況討論,是解決本題的關(guān)鍵.三、解答題1、(1)四邊形CODP是菱形,理由見解析;(2)四邊形CODP是矩形,理由見解析;(3)四邊形CODP是正方形,理由見解析【分析】(1)先證明四邊形CODP是平行四邊形,再由矩形的性質(zhì)可得OD=OC,即可證明平行四邊形OCDP是菱形;(2)先證明四邊形CODP是平行四邊形,再由菱形的性質(zhì)可得∠DOC=90°,即可證明平行四邊形OCDP是矩形;(3)先證明四邊形CODP是平行四邊形,再由正方形的性質(zhì)可得BD⊥AC,DO=OC,即可證明平行四邊形OCDP是正方形;【詳解】解:(1)四邊形CODP是菱形,理由如下:∵DP∥OC,且DP=OC,∴四邊形CODP是平行四邊形,又∵四邊形ABCD是矩形,∴OD=OC,∴平行四邊形OCDP是菱形;(2)四邊形CODP是矩形,理由如下:∵DP∥OC,且DP=OC,∴四邊形CODP是平行四邊形,又∵四邊形ABCD是菱形,∴BD⊥AC,∴∠DOC=90°,∴平行四邊形OCDP是矩形;(3)四邊形CODP是正方形,理由如下:∵DP∥OC,且DP=OC,∴四邊形CODP是平行四邊形,又∵四邊形ABCD是正方形,∴BD⊥AC,DO=OC,∴∠DOC=90°,平行四邊形CODP是菱形,∴菱形OCDP是正方形.【點(diǎn)睛】本題主要考查了矩形的性質(zhì)與判定,菱形的性質(zhì)與判定,正方形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握特殊平行四邊形的性質(zhì)與判定條件.2、(1)見詳解;(2)見詳解【分析】(1)根據(jù)平行四邊形的判定定理得四邊形是平行四邊形,進(jìn)而即可得到結(jié)論;(2)先推出∠EBC=∠DCB,進(jìn)而可得∠EBC=∠DCB=90°,然后得到結(jié)論.【詳解】(1)證明:∵,∴BE=CD,∵,∴四邊形是平行四邊形,∴BECD;(2)∵,∴AB=AC,∠ABE=∠ACD,∴∠ABC=∠ACB,∴∠ABE+∠ABC=∠ACD+∠ACB,即:∠EBC=∠DCB,∵BE∥CD,∴∠EBC+∠DCB=180°,∴∠EBC=∠DCB=90°,∴四邊形是矩形.【點(diǎn)睛】本題主要考查平行四邊形的判定和性質(zhì),矩形的判定定理,全等三角形的性質(zhì),熟練掌握矩形的判定定理是關(guān)鍵.3、(1)MN=AM+CN;(2)MN=AM+CN,理由見解析;(3)MN=CN-AM,理由見解析【分析】(1)把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,可得到點(diǎn)M'、C、N三點(diǎn)共線,再由∠MBN=45°,可得∠M'BN=∠MBN,從而證得△NBM≌△NBM',即可求解;(2)把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,由∠A+∠C=180°,可得點(diǎn)M'、C、N三點(diǎn)共線,再由∠MBN=∠ABC,可得到∠M'BN=∠MBN,從而證得△NBM≌△NBM',即可求解;(3)在NC上截取CM'=AM,連接BM',由∠ABC+∠ADC=180°,可得∠BAM=∠C,再由AB=BC,可證得△ABM≌△CBM',從而得到AM=CM',BM=BM',∠ABM=∠CBM',進(jìn)而得到∠MAM'=∠ABC,再由∠MBN=∠ABC,可得∠MBN=∠M'BN,從而得到△NBM≌△NBM',即可求解.【詳解】解:(1)如圖,把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,在正方形ABCD中,∠A=∠BCD=∠ABC=90°,AB=BC,∴∠BCM'+∠BCD=180°,∴點(diǎn)M'、C、N三點(diǎn)共線,∵∠MBN=45°,∴∠ABM+∠CBN=45°,∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=45°,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN=M'N,∵M(jìn)'N=M'C+CN,∴MN=M'C+CN=AM+CN;(2)MN=AM+CN;理由如下:如圖,把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,∵∠A+∠C=180°,∴∠BCM'+∠BCD=180°,∴點(diǎn)M'、C、N三點(diǎn)共線,∵∠MBN=∠ABC,∴∠ABM+∠CBN=∠ABC=∠MBN,∴∠CBN+∠M'BC=∠MBN,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN=M'N,∵M(jìn)'N=M'C+CN,∴MN=M'C+CN=AM+CN;(3)MN=CN-AM,理由如下:如圖,在NC上截取CM'=AM,連接BM',∵在四邊形ABCD中,∠ABC+∠ADC=180°,∴∠C+∠BAD=180°,∵∠BAM+∠BAD=180°,∴∠BAM=∠C,∵AB=BC,∴△ABM≌△CBM',∴AM=CM',BM=BM',∠ABM=∠CBM',∴∠MAM'=∠ABC,∵∠MBN=∠ABC,∴∠MBN=∠MAM'=∠M'BN,∵BN=BN,∴△NBM≌△NBM',∴MN=M'N,∵M(jìn)'N=CN-CM',∴MN=CN-AM.故答案是:MN=CN-AM.【點(diǎn)睛】本題主要考查了正方形的性
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年電氣常識(shí)解答題題庫(kù)及答案
- 石油礦業(yè)知識(shí)題庫(kù)及答案
- 置業(yè)顧問面試通關(guān)技巧
- 2025廣東肇慶市鼎湖區(qū)教育局赴高校設(shè)點(diǎn)招聘中小學(xué)教師80人模擬筆試試題及答案解析
- 蘭州中考美術(shù)試題題庫(kù)及答案
- 大學(xué)心理學(xué)考試題及答案
- 2025重慶機(jī)床(集團(tuán))有限責(zé)任公司招聘3人筆試備考重點(diǎn)試題及答案解析
- 2025福建建達(dá)集團(tuán)建設(shè)工程管理有限公司招聘1人筆試備考重點(diǎn)題庫(kù)及答案解析
- 2025上??禈芳疑鐓^(qū)服務(wù)發(fā)展中心招聘模擬筆試試題及答案解析
- 2025云南玉溪江川特巡警招隊(duì)員3人模擬筆試試題及答案解析
- 2025 年高職酒店管理(人力資源管理)試題及答案
- 危重患者的容量管理
- 2025秋四年級(jí)上冊(cè)勞動(dòng)技術(shù)期末測(cè)試卷(人教版)及答案(三套)
- 2025年應(yīng)急物資準(zhǔn)備安全培訓(xùn)試卷及答案:物資管理人員應(yīng)急物資使用測(cè)試
- 電商售后客服主管述職報(bào)告
- 2025昆明市呈貢區(qū)城市投資集團(tuán)有限公司及下屬子公司第一批招聘(12人)筆試考試參考試題及答案解析
- 受控文件管理流程
- 2025年黑龍江省哈爾濱市中考數(shù)學(xué)真題含解析
- 2026年湖南現(xiàn)代物流職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能考試題庫(kù)附答案
- 河北省2025年職業(yè)院校嵌入式系統(tǒng)應(yīng)用開發(fā)賽項(xiàng)(高職組)技能大賽參考試題庫(kù)(含答案)
- 2025譯林版新教材初中英語八年級(jí)上冊(cè)單詞表(復(fù)習(xí)必背)
評(píng)論
0/150
提交評(píng)論