初一下冊數(shù)學期末壓軸題考試試題培優(yōu)試卷_第1頁
初一下冊數(shù)學期末壓軸題考試試題培優(yōu)試卷_第2頁
初一下冊數(shù)學期末壓軸題考試試題培優(yōu)試卷_第3頁
初一下冊數(shù)學期末壓軸題考試試題培優(yōu)試卷_第4頁
初一下冊數(shù)學期末壓軸題考試試題培優(yōu)試卷_第5頁
已閱讀5頁,還剩42頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

一、解答題1.在平面直角坐標系中,點A,B的坐標分別為(﹣1,0),(3,0),現(xiàn)同時將點A,B分別向上平移2個單位,再向右平移1個單位,分別得到點A,B的對應點C,D,連接AC,BD.(1)求點C,D的坐標及四邊形ABDC的面積S四邊形ABDC;(2)在y軸上是否存在一點P,連接PA,PB,使S△PAB=S四邊形ABDC?若存在這樣一點,求出點P的坐標;若不存在,試說明理由;(3)點P是直線BD上一個動點,連接PC、PO,當點P在直線BD上運動時,請直接寫出∠OPC與∠PCD、∠POB的數(shù)量關系2.已知:如圖,直線AB//CD,直線EF交AB,CD于P,Q兩點,點M,點N分別是直線CD,EF上一點(不與P,Q重合),連接PM,MN.(1)點M,N分別在射線QC,QF上(不與點Q重合),當∠APM+∠QMN=90°時,①試判斷PM與MN的位置關系,并說明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度數(shù).(提示:過N點作AB的平行線)(2)點M,N分別在直線CD,EF上時,請你在備用圖中畫出滿足PM⊥MN條件的圖形,并直接寫出此時∠APM與∠QMN的關系.(注:此題說理時不能使用沒有學過的定理)3.已知直線,點P為直線、所確定的平面內(nèi)的一點.(1)如圖1,直接寫出、、之間的數(shù)量關系;(2)如圖2,寫出、、之間的數(shù)量關系,并證明;(3)如圖3,點E在射線上,過點E作,作,點G在直線上,作的平分線交于點H,若,,求的度數(shù).4.已知:直線AB∥CD,M,N分別在直線AB,CD上,H為平面內(nèi)一點,連HM,HN.(1)如圖1,延長HN至G,∠BMH和∠GND的角平分線相交于點E.求證:2∠MEN﹣∠MHN=180°;(2)如圖2,∠BMH和∠HND的角平分線相交于點E.①請直接寫出∠MEN與∠MHN的數(shù)量關系:;②作MP平分∠AMH,NQ∥MP交ME的延長線于點Q,若∠H=140°,求∠ENQ的度數(shù).(可直接運用①中的結論)5.如圖1,MN∥PQ,點C、B分別在直線MN、PQ上,點A在直線MN、PQ之間.(1)求證:∠CAB=∠MCA+∠PBA;(2)如圖2,CD∥AB,點E在PQ上,∠ECN=∠CAB,求證:∠MCA=∠DCE;(3)如圖3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度數(shù).6.已知,AB∥CD,點E為射線FG上一點.(1)如圖1,若∠EAF=25°,∠EDG=45°,則∠AED=.(2)如圖2,當點E在FG延長線上時,此時CD與AE交于點H,則∠AED、∠EAF、∠EDG之間滿足怎樣的關系,請說明你的結論;(3)如圖3,當點E在FG延長線上時,DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度數(shù).7.小學的時候我們已經(jīng)學過分數(shù)的加減法法則:“同分母分數(shù)相加減,分母不變,分子相加減;異分母分數(shù)相加減,先通分,轉(zhuǎn)化為同分母分數(shù),再加減.”如:,反之,這個式子仍然成立,即:.(1)問題發(fā)現(xiàn)觀察下列等式:①,②,③,…,猜想并寫出第個式子的結果:.(直接寫出結果,不說明理由)(2)類比探究將(1)中的的三個等式左右兩邊分別相加得:,類比該問題的做法,請直接寫出下列各式的結果:①;②;(3)拓展延伸計算:.8.據(jù)說,我國著名數(shù)學家華羅庚在一次訪問途中,看到飛機鄰座的乘客閱讀的雜志上有一道智力題:一個數(shù)32768,它是一個正數(shù)的立方,希望求它的立方根,華羅庚不假思索給出了答案,鄰座乘客非常驚奇,很想得知其中的奧秘,你知道華羅庚是怎樣準確計算出的嗎?請按照下面的問題試一試:(1)由,因為,請確定是______位數(shù);(2)由32768的個位上的數(shù)是8,請確定的個位上的數(shù)是________,劃去32768后面的三位數(shù)768得到32,因為,請確定的十位上的數(shù)是_____________;(3)已知和分別是兩個數(shù)的立方,仿照上面的計算過程,請計算:;.9.下列等式:,,,將以上三個等式兩邊分別相加得:.(1)觀察發(fā)現(xiàn):__________.(2)初步應用:利用(1)的結論,解決以下問題“①把拆成兩個分子為1的正的真分數(shù)之差,即;②把拆成兩個分子為1的正的真分數(shù)之和,即;(3)定義“”是一種新的運算,若,,,求的值.10.給定一個十進制下的自然數(shù),對于每個數(shù)位上的數(shù),求出它除以的余數(shù),再把每一個余數(shù)按照原來的數(shù)位順序排列,得到一個新的數(shù),定義這個新數(shù)為原數(shù)的“模二數(shù)”,記為.如.對于“模二數(shù)”的加法規(guī)定如下:將兩數(shù)末位對齊,從右往左依次將相應數(shù)位.上的數(shù)分別相加,規(guī)定:與相加得;與相加得與相加得,并向左邊一位進.如的“模二數(shù)”相加的運算過程如下圖所示.根據(jù)以上材料,解決下列問題:(1)的值為______,的值為_(2)如果兩個自然數(shù)的和的“模二數(shù)”與它們的“模二數(shù)”的和相等,則稱這兩個數(shù)“模二相加不變”.如,因為,所以,即與滿足“模二相加不變”.①判斷這三個數(shù)中哪些與“模二相加不變”,并說明理由;②與“模二相加不變”的兩位數(shù)有______個11.閱讀下列材料:小明為了計算的值,采用以下方法:設①則②②-①得,請仿照小明的方法解決以下問題:(1)________;(2)_________;(3)求的和(,是正整數(shù),請寫出計算過程).12.已知,在計算:的過程中,如果存在正整數(shù),使得各個數(shù)位均不產(chǎn)生進位,那么稱這樣的正整數(shù)為“本位數(shù)”.例如:2和30都是“本位數(shù)”,因為沒有進位,沒有進位;15和91都不是“本位數(shù)”,因為,個位產(chǎn)生進位,,十位產(chǎn)生進位.則根據(jù)上面給出的材料:(1)下列數(shù)中,如果是“本位數(shù)”請在后面的括號內(nèi)打“√”,如果不是“本位數(shù)”請在后面的括號內(nèi)畫“×”.106();111();400();2015().(2)在所有的四位數(shù)中,最大的“本位數(shù)”是,最小的“本位數(shù)”是.(3)在所有三位數(shù)中,“本位數(shù)”一共有多少個?13.如圖所示,A(1,0),點B在y軸上,將三角形OAB沿x軸負方向平移,平移后的圖形為三角形DEC,點C的坐標為(﹣3,2).(1)直接寫出點E的坐標;(2)在四邊形ABCD中,點P從點O出發(fā),沿OB→BC→CD移動,若點P的速度為每秒1個單位長度,運動時間為t秒,請解決以下問題;①當t為多少秒時,點P的橫坐標與縱坐標互為相反數(shù);②當t為多少秒時,三角形PEA的面積為2,求此時P的坐標14.綜合與實踐背景閱讀:在同一平面內(nèi),兩條不重合的直線的位置關系有相交、平行,若兩條不重合的直線只有一個公共點,我們就說這兩條直線相交,若兩條直線不相交,我們就說這兩條直線互相平行兩條直線的位置關系的性質(zhì)和判定是幾何的重要知識,是初中階段幾何合情推理的基礎.已知:AM∥CN,點B為平面內(nèi)一點,AB⊥BC于B.問題解決:(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關系;(2)如圖2,過點B作BD⊥AM于點D,求證:∠ABD=∠C;(3)如圖3,在(2)問的條件下,點E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,則∠EBC=.15.如圖1,在平面直角坐標系中,A(a,0),C(b,2),且滿足,過C作軸于B,(1)求a,b的值;(2)在y軸上是否存在點P,使得△ABC和△OCP的面積相等,若存在,求出點P坐標,若不存在,試說明理由.(3)若過B作BD∥AC交y軸于D,且AE,DE分別平分∠CAB,∠ODB,如圖2,圖3,①求:∠CAB+∠ODB的度數(shù);②求:∠AED的度數(shù).16.中國傳統(tǒng)節(jié)日“端午節(jié)”期間,某商場開展了“歡度端午,回饋顧客”的讓利促銷活動,對部分品牌的粽子進行了打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買5盒甲品牌粽子和4盒乙品牌粽子需520元.(1)打折前,每盒甲、乙品牌粽子分別為多少元?(2)在商場讓利促銷活動期間,某敬老院準備購買甲、乙兩種品牌粽子共40盒,總費用不超過2300元,問敬老院最多可購買多少盒乙品牌粽子?17.如圖1,點是第二象限內(nèi)一點,軸于,且是軸正半軸上一點,是x軸負半軸上一點,且.(1)(),()(2)如圖2,設為線段上一動點,當時,的角平分線與的角平分線的反向延長線交于點,求的度數(shù):(注:三角形三個內(nèi)角的和為)(3)如圖3,當點在線段上運動時,作交于的平分線交于,當點在運動的過程中,的大小是否變化?若不變,求出其值;若變化,請說明理由.18.如圖1,在平面直角坐標系中,點O是坐標原點,邊長為2的正方形ABCD(點D與點O重合)和邊長為4的正方形EFGH的邊CO和GH都在x軸上,且點H坐標為(7,0).正方形ABCD以3個單位長度/秒的速度沿著x軸向右運動,記正方形ABCD和正方形EFGH重疊部分的面積為S,假設運動時間為t秒,且t<4.(1)點F的坐標為;(2)如圖2,正方形ABCD向右運動的同時,動點P在線段FE上,以1個單位長度/秒的速度從F到E運動.連接AP,AE.①求t為何值時,AP所在直線垂直于x軸;②求t為何值時,S=S△APE.19.五一節(jié)前,某商店擬購進A、B兩種品牌的電風扇進行銷售,已知購進3臺A種品牌電風扇所需費用與購進2臺B種品牌電風扇所需費用相同,購進1臺A種品牌電風扇與2臺B種品牌電風扇共需費用400元.(1)求A、B兩種品牌電風扇每臺的進價分別是多少元?(2)銷售時,該商店將A種品牌電風扇定價為180元/臺,B種品牌電風扇定價為250元/臺,商店擬用1000元購進這兩種風扇(1000元剛好全部用完),為能在銷售完這兩種電風扇后獲得最大的利潤,該商店應采用哪種進貨方案?20.先閱讀下面材料,再完成任務:有些關于方程組的問題,欲求的結果不是每一個未知數(shù)的值,而是關于未知數(shù)的代數(shù)式的值,如以下問題:已知實數(shù),滿足,……①,,……②,求和的值.本題常規(guī)思路是將①②兩式聯(lián)立組成方程組,解得,的值再代入欲求值的代數(shù)式得到答案,常規(guī)思路運算量比較大.其實,仔細觀察兩個方程未知數(shù)的系數(shù)之間的關系,本題還可以通過適當變形整體求得代數(shù)式的值,如由①-②可得,由①+②×2可得,這樣的解題思想就是通常所說的“整體思想”解決問題:(1)已知二元一次方程組,則______,______;(2)某班級組織活動購買小獎品,買20支鉛筆、3塊橡皮、2本日記本共需32元,買39支鉛筆、5塊橡皮、3本日記木共需58元,則購買5支鉛筆、5塊橡皮、5本日記本共需多少元?(3)對于實數(shù),,定義新運算:,其中,,是常數(shù),等式右邊是通常的加法和乘法運算.已知,,那么______.21.如圖,學校印刷廠與A,D兩地有公路、鐵路相連,從A地購進一批每噸8000元的白紙,制成每噸10000元的作業(yè)本運到D地批發(fā),已知公路運價1.5元/(t?km),鐵路運價1.2元/(t?km).這兩次運輸支出公路運費4200元,鐵路運費26280元.(1)白紙和作業(yè)本各多少噸?(2)這批作業(yè)本的銷售款比白紙的購進款與運輸費的和多多少元?22.對于不為0的一位數(shù)和一個兩位數(shù),將數(shù)放置于兩位數(shù)之前,或者將數(shù)放置于兩位數(shù)的十位數(shù)字與個位數(shù)字之間就可以得到兩個新的三位數(shù),將較大三位數(shù)減去較小三位數(shù)的差與15的商記為.例如:當,時,可以得到168,618.較大三位數(shù)減去較小三位數(shù)的差為,而,所以.(1)計算:.(2)若是一位數(shù),是兩位數(shù),的十位數(shù)字為(,為自然數(shù)),個位數(shù)字為8,當時,求出所有可能的,的值.23.在平面直角坐標系中,把線段先向右平移h個單位,再向下平移1個單位得到線段(點A對應點C),其中分別是第三象限與第二象限內(nèi)的點.(1)若,求C點的坐標;(2)若,連接,過點B作的垂線l①判斷直線l與x軸的位置關系,并說明理由;②已知E是直線l上一點,連接,且的最小值為1,若點B,D及點都是關于x,y的二元一次方程的解為坐標的點,試判斷是正數(shù)?負數(shù)還是0?并說明理由.24.若任意一個代數(shù)式,在給定的范圍內(nèi)求得的最大值和最小值恰好也在該范圍內(nèi),則稱這個代數(shù)式是這個范圍的“湘一代數(shù)式”.例如:關于x的代數(shù)式,當1x1時,代數(shù)式在x1時有最大值,最大值為1;在x0時有最小值,最小值為0,此時最值1,0均在1x1這個范圍內(nèi),則稱代數(shù)式是1x1的“湘一代數(shù)式”.(1)若關于的代數(shù)式,當時,取得的最大值為,最小值為,所以代數(shù)式(填“是”或“不是”)的“湘一代數(shù)式”.(2)若關于的代數(shù)式是的“湘一代數(shù)式”,求a的最大值與最小值.(3)若關于的代數(shù)式是的“湘一代數(shù)式”,求m的取值范圍.25.小語爸爸開了一家茶葉專賣店,包裝設計專業(yè)畢業(yè)的小語為爸爸設計了一款紙質(zhì)長方體茶葉包包裝盒(紙片厚度不計).如圖,陰影部分是裁剪掉的部分,沿圖中實線折疊做成的長方體紙盒的上下底面是正方形,有三處長方形形狀的“接口”用來折疊后粘貼或封蓋.(1)若小語用長,寬的長方形紙片,恰好能做成一個符合要求的包裝盒,盒高是盒底邊長的倍,三處“接口”的寬度相等.則該茶葉盒的容積是多少?(2)小語爸爸的茶葉專賣店以每盒元購進一批茶葉,按進價增加作為售價,第一個月由于包裝粗糙,只售出不到一半但超過三分之一的量;第二個月采用了小語的包裝后,馬上售完了余下的茶葉,但每盒成本增加了元,售價仍不變,已知在整個買賣過程中共盈利元,求這批茶葉共進了多少盒?26.閱讀理解:例1.解方程|x|=2,因為在數(shù)軸上到原點的距離為2的點對應的數(shù)為±2,所以方程|x|=2的解為x=±2.例2.解不等式|x﹣1|>2,在數(shù)軸上找出|x﹣1|=2的解(如圖),因為在數(shù)軸上到1對應的點的距離等于2的點對應的數(shù)為﹣1或3,所以方程|x﹣1|=2的解為x=﹣1或x=3,因此不等式|x﹣1|>2的解集為x<﹣1或x>3.參考閱讀材料,解答下列問題:(1)方程|x﹣2|=3的解為;(2)解不等式:|x﹣2|≤1.(3)解不等式:|x﹣4|+|x+2|>8.(4)對于任意數(shù)x,若不等式|x+2|+|x﹣4|>a恒成立,求a的取值范圍.27.定義:如果一個兩位數(shù)a的十位數(shù)字為m,個位數(shù)字為n,且、、,那么這個兩位數(shù)叫做“互異數(shù)”.將一個“互異數(shù)”的十位數(shù)字與個位數(shù)字對調(diào)后得到一個新的兩位數(shù),把這個新兩位數(shù)與原兩位數(shù)的和與11的商記為.例如:,對調(diào)個位數(shù)字與十位數(shù)字得到新兩位數(shù)41,新兩位數(shù)與原兩位數(shù)的和為,和與11的商為,所以.根據(jù)以上定義,解答下列問題:(1)填空:①下列兩位數(shù):20,21,22中,“互異數(shù)”為________;②計算:________;________;(m、n分別為一個兩位數(shù)的十位數(shù)字與個位數(shù)字)(2)如果一個“互異數(shù)”b的十位數(shù)字是x,個位數(shù)字是y,且;另一個“互異數(shù)”c的十位數(shù)字是,個位數(shù)字是,且,請求出“互異數(shù)”b和c;(3)如果一個“互異數(shù)”d的十位數(shù)字是x,個位數(shù)字是,另一個“互異數(shù)”e的十位數(shù)字是,個位數(shù)字是3,且滿足,請直接寫出滿足條件的所有x的值________;(4)如果一個“互異數(shù)”f的十位數(shù)字是,個位數(shù)字是x,且滿足的互異數(shù)有且僅有3個,則t的取值范圍________.28.閱讀理解:定義:,,為數(shù)軸上三點,若點到點的距離是它到點的時距離的(為大于1的常數(shù))倍,則稱點是的倍點,且當是的倍點或的倍點時,我們也稱是和兩點的倍點.例如,在圖1中,點是的2倍點,但點不是的2倍點.(1)特值嘗試.①若,圖1中,點______是的2倍點.(填或)②若,如圖2,,為數(shù)軸上兩個點,點表示的數(shù)是,點表示的數(shù)是4,數(shù)______表示的點是的3倍點.(2)周密思考:圖2中,一動點從出發(fā),以每秒2個單位的速度沿數(shù)軸向左運動秒,若恰好是和兩點的倍點,求所有符合條件的的值.(用含的式子表示)(3)拓展應用數(shù)軸上兩點間的距離不超過30個單位長度時,稱這兩點處于“可視距離”.若(2)中滿足條件的和兩點的所有倍點均處于點的“可視距離”內(nèi),請直接寫出的取值范圍.(不必寫出解答過程)29.如圖,以直角三角形AOC的直角頂點O為原點,以OC、OA所在直線為x軸和y軸建立平面直角坐標系,點A(0,a),C(b,0)滿足+|b﹣2|=0,D為線段AC的中點.在平面直角坐標系中,以任意兩點P(x1,y1)、Q(x2,y2)為端點的線段中點坐標為(,).(1)則A點的坐標為;點C的坐標為,D點的坐標為.(2)已知坐標軸上有兩動點P、Q同時出發(fā),P點從C點出發(fā)沿x軸負方向以1個單位長度每秒的速度勻速移動,Q點從O點出發(fā)以2個單位長度每秒的速度沿y軸正方向移動,點Q到達A點整個運動隨之結束.設運動時間為t(t>0)秒.問:是否存在這樣的t,使S△ODP=S△ODQ,若存在,請求出t的值;若不存在,請說明理由.(3)點F是線段AC上一點,滿足∠FOC=∠FCO,點G是第二象限中一點,連OG,使得∠AOG=∠AOF.點E是線段OA上一動點,連CE交OF于點H,當點E在線段OA上運動的過程中,請確定∠OHC,∠ACE和∠OEC的數(shù)量關系,并說明理由.30.規(guī)定:二元一次方程有無數(shù)組解,每組解記為,稱為亮點,將這些亮點連接得到一條直線,稱這條直線是亮點的隱線,答下列問題:(1)已知,則是隱線的亮點的是;(2)設是隱線的兩個亮點,求方程中的最小的正整數(shù)解;(3)已知是實數(shù),且,若是隱線的一個亮點,求隱線中的最大值和最小值的和.【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1)C(0,2),D(4,2),S四邊形ABDC=8;(2)存在,P(0,4)或(0,﹣4);(3)點p在線段BD上,∠OPC=∠PCD+∠POB;點P在BD延長線上,∠OPC=∠POB-∠PCD;點P在DB延長線上運動時,∠OPC=∠PCD-∠POB.【解析】【分析】(1)根據(jù)點平移的規(guī)律易得點C的坐標為(0,2),點D的坐標為(4,2);四邊形ABDC的面積=2×(3+1)=8;(2)存在.設點P到AB的距離為h,則S△PAB=×AB×h,根據(jù)S△PAB=S四邊形ABDC,列方程求h的值,確定P點坐標.(3)分類討論:當點P在線段BD上,作PM∥AB,根據(jù)平行線的性質(zhì)由MP∥AB得∠2=∠POB,由CD∥AB得到CD∥MF,則∠1=∠PCD,所以∠OPC=∠POB+∠PCD;同樣得到當點P在線段DB的延長線上,∠OPC=∠PCD-∠POB;當點P在線段BD的延長線上,得到∠OPC=∠POB-∠PCD.【詳解】(1)依題意,得C(0,2),D(4,2),∴S四邊形ABDC=AB×OC=4×2=8;(2)在y軸上是存在一點P,使S△PAB=S四邊形ABDC.理由如下:設點P到AB的距離為h,S△PAB=×AB×h=2h,由S△PAB=S四邊形ABDC,得2h=8,解得h=4,∴P(0,4)或(0,-4).(3)當點P在線段BD上,作PM∥AB,如圖1,∵MP∥AB,∴∠2=∠POB,∵CD∥AB,∴CD∥MP,∴∠1=∠PCD,∴∠OPC=∠1+∠2=∠POB+∠PCD;當點P在線段DB的延長線上,作PN∥AB,如圖2,∵PN∥AB,∴∠NPO=∠POB,∵CD∥AB,∴CD∥PN,∴∠NPC=∠FCD,∴∠OPC=∠NPC-∠NPO=∠FCD-∠POB;同樣得到當點P在線段BD的延長線上,得到∠OPC=∠POB-∠PCD.【點睛】本題考查了坐標與圖形性質(zhì):利用點的坐標得到線段的長和線段與坐標軸的關系.也考查了平行線的性質(zhì)和分類討論的思想.2.(1)①PM⊥MN,理由見解析;②∠EPB的度數(shù)為125°;(2)∠APM+∠QMN=90°或∠APM-∠QMN=90°.【分析】(1)①利用平行線的性質(zhì)得到∠APM=∠PMQ,再根據(jù)已知條件可得到PM⊥MN;②過點N作NH∥CD,利用角平分線的定義以及平行線的性質(zhì)求得∠MNH=35°,即可求解;(2)分三種情況討論,利用平行線的性質(zhì)即可解決.【詳解】解:(1)①PM⊥MN,理由見解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ+∠QMN=90°,∴PM⊥MN;②過點N作NH∥CD,∵AB//CD,∴AB//NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA+∠MNH=90°,即∠ENH+∠MNH=90°,∴∠MNQ+∠MNH+∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ+∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度數(shù)為125°;(2)當點M,N分別在射線QC,QF上時,如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM=∠PMQ,∴∠APM+∠QMN=90°;當點M,N分別在射線QC,線段PQ上時,如圖:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ-∠QMN=90°,∴∠APM-∠QMN=90°;當點M,N分別在射線QD,QF上時,如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM-∠QMN=90°;綜上,∠APM+∠QMN=90°或∠APM-∠QMN=90°.【點睛】本題主要考查了平行線的判定與性質(zhì),熟練掌握兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,同位角相等等知識是解題的關鍵.3.(1)∠A+∠C+∠APC=360°;(2)見解析;(3)55°【分析】(1)首先過點P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內(nèi)角互補,即可證得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根據(jù)兩直線平行,內(nèi)錯角相等,即可證得∠APC=∠A+∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,先證∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根據(jù)∠PEH=∠PEG-∠GEH可得答案.【詳解】解:(1)∠A+∠C+∠APC=360°如圖1所示,過點P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如圖2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG-∠GEH=∠FEG-∠BEG=∠BEF=55°.【點睛】此題考查了平行線的性質(zhì)以及角平分線的定義.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結合思想的應用.4.(1)見解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)過點E作EP∥AB交MH于點Q,利用平行線的性質(zhì)、角平分線性質(zhì)、鄰補角和為180°,角與角之間的基本運算、等量代換等即可得證.(2)①過點H作GI∥AB,利用(1)中結論2∠MEN﹣∠MHN=180°,利用平行線的性質(zhì)、角平分線性質(zhì)、鄰補角和為180°,角與角之間的基本運算、等量代換等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),進而用等量代換得出2∠MEN+∠MHN=360°.②過點H作HT∥MP,由①的結論得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行線性質(zhì)得∠ENQ+∠ENH+∠NHT=180°,由角平分線性質(zhì)及鄰補角可得∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.繼續(xù)使用等量代換可得∠ENQ度數(shù).【詳解】解:(1)證明:過點E作EP∥AB交MH于點Q.如答圖1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=∠GND.(兩直線平行,內(nèi)錯角相等)∴∠MEN=∠MEQ+∠QEN=∠BMH+∠GND=(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:過點H作GI∥AB.如答圖2由(1)可得∠MEN=(∠BMH+∠HND),由圖可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案為:2∠MEN+∠MHN=360°.②:由①的結論得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.過點H作HT∥MP.如答圖2∵MP∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(兩直線平行,同旁內(nèi)角互補).∵MP平分∠AMH,∴∠PMH=∠AMH=(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.∵∠ENH=∠HND.∴∠ENQ+∠HND+140°﹣90°+∠BMH=180°.∴∠ENQ+(HND+∠BMH)=130°.∴∠ENQ+∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【點睛】本題考查了平行線的性質(zhì),角平分線的性質(zhì),鄰補角,等量代換,角之間的數(shù)量關系運算,輔助線的作法,正確作出輔助線是解題的關鍵,本題綜合性較強.5.(1)證明見解析;(2)證明見解析;(3)120°.【分析】(1)過點A作AD∥MN,根據(jù)兩直線平行,內(nèi)錯角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根據(jù)角的和差等量代換即可得解;(2)由兩直線平行,同旁內(nèi)角互補得到∴、∠CAB+∠ACD=180°,由鄰補角定義得到∠ECM+∠ECN=180°,再等量代換即可得解;(3)由平行線的性質(zhì)得到,∠FAB=120°﹣∠GCA,再由角平分線的定義及平行線的性質(zhì)得到∠GCA﹣∠ABF=60°,最后根據(jù)三角形的內(nèi)角和是180°即可求解.【詳解】解:(1)證明:如圖1,過點A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如圖2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.【點睛】本題主要考查了平行線的性質(zhì),線段、角、相交線與平行線,準確的推導是解決本題的關鍵.6.(1)70°;(2),證明見解析;(3)122°【分析】(1)過作,根據(jù)平行線的性質(zhì)得到,,即可求得;(2)過過作,根據(jù)平行線的性質(zhì)得到,,即;(3)設,則,通過三角形內(nèi)角和得到,由角平分線定義及得到,求出的值再通過三角形內(nèi)角和求.【詳解】解:(1)過作,,,,,,故答案為:;(2).理由如下:過作,,,,,,,;(3),設,則,,,又,,,平分,,,,即,解得,,.【點睛】本題主要考查了平行線的性質(zhì)和判定,正確做出輔助線是解決問題的關鍵.7.(1);(2)①;②;(3).【分析】(1)根據(jù)題目中的式子可以寫出第n個式子的結果;(2)①根據(jù)題目中的式子的特點和(1)中的結果,可以求得所求式子的值;②根據(jù)題目中的式子的特點和(1)中的結果,可以求得所求式子的值;(3)根據(jù)題目中式子的特點,可以求得所求式子的值.【詳解】解:(1)由題目中的式子可得,,故答案為:;(2)①,故答案為:;②,故答案為:;(3).【點睛】本題考查數(shù)字的變化類、有理數(shù)的混合運算,解答本題的關鍵是明確題意,發(fā)現(xiàn)題目中式子的變化特點,求出所求式子的值.8.(1)兩;(2)2,3;(3)24,﹣48;【分析】(1)由題意可得,進而可得答案;(2)由只有個位數(shù)是2的數(shù)的立方的個位數(shù)是8,可確定的個位上的數(shù),由可得27<32<64,進而可確定,于是可確定的十位上的數(shù),進而可得答案;(3)仿照(1)(2)兩小題中的方法解答即可.【詳解】解:(1)因為,所以,所以是一個兩位數(shù);故答案為:兩;(2)因為只有個位數(shù)是2的數(shù)的立方的個位數(shù)是8,所以的個位上的數(shù)是2,劃去32768后面的三位數(shù)768得到32,因為,27<32<64,所以,所以的十位上的數(shù)是3;故答案為:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10<<100,∴是兩位數(shù);∵只有個位數(shù)是4的數(shù)的立方的個位數(shù)是4,∴的個位上的數(shù)是4,劃去13824后面的三位數(shù)824得到13,∵8<13<27,∴20<<30.∴=24;由103=1000,1003=1000000,1000<110592<1000000,∴10<<100,∴是兩位數(shù);∵只有個位數(shù)是8的數(shù)的立方的個位數(shù)是2,∴的個位上的數(shù)是8,劃去110592后面的三位數(shù)592得到110,∵64<110<125,∴40<<50,∴;∴=﹣48.【點睛】本題考查了立方根和立方數(shù)的規(guī)律探求,具有一定的難度,正確理解題意、確定所求的數(shù)的個位數(shù)字和十位數(shù)字是解題的關鍵.9.(1);;(2)①;②;(3).【分析】(1)利用材料中的“拆項法”解答即可;(2)①先變形為,再利用(1)中的規(guī)律解題;②先變形為,再逆用分數(shù)的加法法則即可分解;(3)按照定義“”法則表示出,再利用(1)中的規(guī)律解題即可.【詳解】解:(1)觀察發(fā)現(xiàn):,===;故答案是:;.(2)初步應用:①=;②;故答案是:;.(3)由定義可知:====.故的值為.【點睛】考查了有理數(shù)運算中的規(guī)律型問題:數(shù)字的變化規(guī)律,有理數(shù)的混合運算.本題是一道找規(guī)律的題目,要求學生通過觀察,分析、歸納發(fā)現(xiàn)其中的規(guī)律,并應用發(fā)現(xiàn)的規(guī)律解決問題.10.(1)1011,1101;(2)①12,65,97,見解析,②38【分析】(1)根據(jù)“模二數(shù)”的定義計算即可;(2)①根據(jù)“模二數(shù)”和模二相加不變”的定義,分別計算和12+23,65+23,97+23的值,即可得出答案②設兩位數(shù)的十位數(shù)字為a,個位數(shù)字為b,根據(jù)a、b的奇偶性和“模二數(shù)”和模二相加不變”的定義進行討論,從而得出與“模二相加不變”的兩位數(shù)的個數(shù)【詳解】解:(1),故答案為:①,,與滿足“模二相加不變”.,,,與不滿足“模二相加不變”.,,,與滿足“模二相加不變”②當此兩位數(shù)小于77時,設兩位數(shù)的十位數(shù)字為a,個位數(shù)字為b,;當a為偶數(shù),b為偶數(shù)時,∴∴與滿足“模二相加不變”有12個(28、48、68不符合)當a為偶數(shù),b為奇數(shù)時,∴∴與不滿足“模二相加不變”.但27、47、67、29、49、69符合共6個當a為奇數(shù),b為奇數(shù)時,∴∴與不滿足“模二相加不變”.但17、37、57、19、39、59也不符合當a為奇數(shù),b為偶數(shù)時,∴∴與滿足“模二相加不變”有16個,(18、38、58不符合)當此兩位數(shù)大于等于77時,符合共有4個綜上所述共有12+6+16+4=38故答案為:38【點睛】本題考查新定義,數(shù)字的變化類,認真觀察、仔細思考,分類討論的數(shù)學思想是解決這類問題的方法.能夠理解定義是解題的關鍵.11.(1);(2);(3)【分析】(1)設式子等于s,將方程兩邊都乘以2后進行計算即可;(2)設式子等于s,將方程兩邊都乘以3,再將兩個方程相減化簡后得到答案;(3)設式子等于s,將方程兩邊都乘以a后進行計算即可.【詳解】(1)設s=①,∴2s=②,②-①得:s=,故答案為:;(2)設s=①,∴3s=②,②-①得:2s=,∴,故答案為:;(3)設s=①,∴as=②,②-①得:(a-1)s=,∴s=.【點睛】此題考查代數(shù)式的規(guī)律計算,能正確理解已知的代數(shù)式的運算規(guī)律是難點,依據(jù)規(guī)律對于每個式子變形計算是關鍵.12.(1)×,√,×,×;(2)3332;1000;(3)(個).【分析】(1)根據(jù)“本位數(shù)”的定義即可判斷;(2)要想保證不進位,千位、百位、十位最大只能是3,個位最大只能是2,故最大的四位“本位數(shù)”是3332;千位最小為1,百位、十位、個位最小為0,故最小的“本位數(shù)”是1000;(3)要想構成“本位數(shù)”,百位可以為1,2,3,十位可以為0,1,2,3,個位可以為0,1,2,所有的三位數(shù)中,“本位數(shù)”一共有(個).【詳解】解:(1)有進位;沒有進位;有進位;有進位;故答案為:×,√,×,×.(2)要想保證不進位,千位、百位、十位最大只能是3,個位最大只能是2,故最大的四位“本位數(shù)”是3332;千位最小為1,百位、十位、個位最小為0,故最小的“本位數(shù)”是1000,故答案為:3332,1000.(3)要想構成“本位數(shù)”,百位可以為1,2,3,十位可以為0,1,2,3,個位可以為0,1,2,所有的三位數(shù)中,“本位數(shù)”一共有(個).【點睛】本題考查了新定義計算題,準確理解新定義的內(nèi)涵是解題的關鍵.13.(1)(-2,0);(2)①4秒;②(0,)或(-3,)【分析】(1)根據(jù)BC=AE=3,OA=1,推出OE=2,可得結論.(2)①判斷出PB=CD,即可得出結論;②根據(jù)△PEA的面積以及AE求出點P到AE的距離,結合點P的路線可得坐標.【詳解】解:(1)∵C(-3,2),A(1,0),∴BC=3,OA=1,∵BC=AE=3,∴OE=AE-AO=2,∴E(-2,0);(2)①∵點C的坐標為(-3,2)∴BC=3,CD=2,∵點P的橫坐標與縱坐標互為相反數(shù);∴點P在線段BC上,∴PB=CD=2,即t=(2+2)÷1=4;∴當t=4秒時,點P的橫坐標與縱坐標互為相反數(shù);②∵△PEA的面積為2,A(1,0),E(-2,0),∴AE=3,設點P到AE的距離為h∴,∴h=,即點P到AE的距離為,∴點P的坐標為(0,)或(-3,).【點睛】本題考查坐標與圖形變化-平移,三角形的面積等知識,解本題的關鍵是由線段和部分點的坐標,得出其它點的坐標.14.(1);(2)見解析;(3)105°【分析】(1)通過平行線性質(zhì)和直角三角形內(nèi)角關系即可求解.(2)過點B作BG∥DM,根據(jù)平行線找角的聯(lián)系即可求解.(3)利用(2)的結論,結合角平分線性質(zhì)即可求解.【詳解】解:(1)如圖1,設AM與BC交于點O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠AOB=90°,∠A+∠C=90°,故答案為:∠A+∠C=90°;(2)證明:如圖2,過點B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如圖3,過點B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,設∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案為:105°.【點睛】本題考查平行線性質(zhì),畫輔助線,找到角的和差倍分關系是求解本題的關鍵.15.(1)a=-2,b=2;(2)P(0,-4)或(0,4);(3)①∠CAB+∠ODB=90°;②∠AED=45°.【分析】(1)根據(jù)非負數(shù)的性質(zhì)即可求得a、b的值;(2)先求得S△ABC=4,設P(0,t),根據(jù)S△OPC=OP×2=××2=4求得t值,即可求得點P的坐標;(3)①已知BD∥AC,根據(jù)兩直線平行,內(nèi)錯角相等可得∠CAB=∠OBD,由∠OBD+∠ODB=90°,即可得∠CAB+∠ODB=90°;②根據(jù)角平分線的定義及①中的結論,可求得∠3+∠4=45°;過點E作EF∥AC,即可得EF∥BD∥AC,根據(jù)平行線的性質(zhì)可得∠3=∠1,∠2=∠4,由此求得∠AED=∠1+∠2=∠4+∠3=45°.【詳解】(1)∵,∴a+2=0,b-2=0,∴a=-2,b=2;(2)∵a=-2,b=2,∴A(-2,0),C(2,2),∴S△ABC=AB?BC=×4×2=4;設P(0,t),∴S△OPC=OP×2=××2==4;∴t=4或t=-4,∴P(0,-4)或(0,4).(3)①∵BD∥AC,∴∠CAB=∠OBD,∵∠OBD+∠ODB=90°,∴∠CAB+∠ODB=90°;②∵AE,DE分別平分∠CAB,∠ODB,∴∠3=,∠4=,∵∠CAB+∠ODB=90°,∴∠3+∠4=+=45°,過點E作EF∥AC,∵BD∥AC,∴EF∥BD∥AC,∴∠3=∠1,∠2=∠4,∴∠AED=∠1+∠2=∠4+∠3=45°.【點睛】本題考查了坐標與圖形性質(zhì),熟知非負數(shù)的性質(zhì)、三角形的面積公式及平行線的性質(zhì)是解決問題的關鍵.16.(1)打折前,甲品牌粽子每盒70元,乙品牌粽子每盒80元;(2)最多可購買15盒乙品牌粽子.【分析】(1)設打折前甲品牌粽子每盒元,乙品牌粽子每盒元,根據(jù)“打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買5盒甲品牌粽子和4盒乙品牌粽子需要520元”,即可得出關于、的二元一次方程組,解之即可得出結論;(2)設敬老院可購買盒乙品牌粽子.即可得出關于的一元一次不等式,解之取其中的最大值整數(shù)值即可得出結論.【詳解】解:(1)設打折前,每盒甲品牌粽子元,每盒乙品牌粽子元,根據(jù)題意,得:,解得,答:打折前,甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)設敬老院可購買盒乙品牌粽子.打折后,甲品牌粽子每盒:(元,乙品牌粽子每盒:(元,根據(jù)題意,得:,解得.的最大整數(shù)解為.答:最多可購買15盒乙品牌粽子.【點睛】本題考查了二元一次方程組的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出二元一次方程組;(2)根據(jù)各數(shù)量之間的關系,正確列出一元一次不等式.17.(1)A(-2,0)、B(0,3);(2)∠APD=90°;(3)∠N的大小不變,∠N=45°【分析】(1)利用非負數(shù)的和為零,各項分別為零,求出a,b的值;(2)如圖,作DM∥x軸,結合題意可設∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,根據(jù)平角的定義可知∠OAD=90°-2y,由平行線的性質(zhì)可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,進而可得出x=y,再結合圖形即可得出∠APD的度數(shù);(3)∠N的大小不變,∠N=45°,如圖,過D作DE∥BC,過N作NF∥BC,根據(jù)平行線的性質(zhì)可知∠BMD+∠OAD=∠ADM=90°,然后根據(jù)角平分線的定義和平行線的性質(zhì),可得∠ANM=∠BMD+∠OAD,據(jù)此即可得到結論.【詳解】(1)由,可得和,解得∴A的坐標是(-2,0)、B的坐標是(0,3);(2)如圖,作DM∥x軸根據(jù)題意,設∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,∵∠CAD=90°,∴∠CAE+∠OAD=90°,∴2y+∠OAD=90°,∴∠OAD=90°-2y,∵DM∥x軸,∴∠OAD+∠ADM=180°,∴90-2y+2x+90°=180°,∴x=y,∴∠APD=180°-(∠PAD+∠ADP)=180°-(y+90°-2y+x)=180°-90°=90°(3)∠N的大小不變,∠N=45°理由:如圖,過D作DE∥BC,過N作NF∥BC.∵BC∥x軸,∴DE∥BC∥x軸,NF∥BC∥x軸,∴∠EDM=∠BMD,∠EDA=∠OAD,∵DM⊥AD,∴∠ADM=90°,∴∠BMD+∠OAD=∠EDM+∠EDA=∠ADM=90°,∵MN平分∠BMD,AN平分∠DAO,∴∠BMN=∠BMD,∠OAN=∠OAD,∴∠ANM=∠BMN+∠OAN=∠BMD+∠OAD=×90°=45°.【點睛】本題考查了坐標與圖形性質(zhì):利用點的坐標計算出相應的線段的長和判斷線段與坐標軸的位置關系.也考查了三角形內(nèi)角和定理和三角形外角性質(zhì).18.(1)(3,4);(2)①t=時,AP所在直線垂直于x軸;②當t為或時,S=S△APE.【分析】(1)根據(jù)直角坐標系得出點F的坐標即可;(2)①根據(jù)AP所在直線垂直于x軸,得出關于t的方程,解答即可;②分和兩種情況,利用面積公式列出方程即可求解.【詳解】(1)由直角坐標系可得:F坐標為:(3,4);故答案為:(3,4);(2)①要使AP所在直線垂直于x軸.如圖1,只需要Px=Ax,則t+3=3t,解得:,所以即時,AP所在直線垂直于x軸;②由題意知,OH=7,所以當時,點D與點H重合,所以要分以下兩種情況討論:情況一:當時,GD=3t﹣3,PF=t,PE=4﹣t,∵S=S△APE,∴BC×GD=,即:2×(3t﹣3)=,解得:;情況二:當時,如圖2,HD=3t﹣7,PF=t,PE=4﹣t,∵S=S△APE,∴BC×CH=,即:2×[2﹣(3t﹣7)]=,解得:,綜上所述,當t為或時,S=S△APE.【點睛】本題考查了平面直角坐標系中點的移動,一元一次方程的應用等問題,理解題意,分類討論是解題關鍵.19.(1)A、B兩種品牌電風扇每臺的進價分別是100元、150元;(2)為能在銷售完這兩種電風扇后獲得最大的利潤,該商店應采用購進A種品牌的電風扇7臺,購進B種品牌的電風扇2臺.【分析】(1)設A種品牌電風扇每臺進價元,B種品牌電風扇每臺進價元,根據(jù)題意即可列出關于x、y的二元一次方程組,解出x、y即可.(2)設購進A品牌電風扇臺,B品牌電風扇臺,根據(jù)題意可列等式,由a和b都為整數(shù)即可求出a和b的值的幾種可能,然后分別算出每一種情況的利潤進行比較即可.【詳解】(1)設A、B兩種品牌電風扇每臺的進價分別是x元、y元,由題意得:,解得:,答:A、B兩種品牌電風扇每臺的進價分別是100元、150元;(2)設購進A種品牌的電風扇a臺,購進B種品牌的電風扇b臺,由題意得:100a+150b=1000,其正整數(shù)解為:或或,當a=1,b=6時,利潤=80×1+100×6=680(元),當a=4,b=4時,利潤=80×4+100×4=720(元),當a=7,b=2時,利潤=80×7+100×2=760(元),∵680<720<760,∴當a=7,b=2時,利潤最大,答:為能在銷售完這兩種電風扇后獲得最大的利潤,該商店應采用購進A種品牌的電風扇7臺,購進B種品牌的電風扇2臺.【點睛】本題主要考查了二元一次方程組的實際應用,根據(jù)題意找出等量關系列出等式是解答本題的關鍵.20.(1)-1;1;(2)30元;(3)-11【分析】(1)①+②,可得出的值,①-②,得的值;(2)設購買1支鉛筆、1塊橡皮、1本日記本分別使用元、元、元,根據(jù)“買20支鉛筆、3塊橡皮、2本日記本共需32元,買39支鉛筆、5塊橡皮、3本日記木共需58元”列出方程組,再根據(jù)方程組的特征求出,進一步可求出;(3)根據(jù)新定義,將數(shù)值代入新定義里,列方程組求解即可得出答案.【詳解】(1)解:①+②,得;①-②,得;故答案為:-1,1;(2)設購買1支鉛筆、1塊橡皮、1本日記本分別使用元、元、元,根據(jù)題意,得:①×②-②得∴(元)答:5本日記本共需30元.(3)①②得∴.【點睛】本題考查了三元一次方程組的應用,熟練讀懂題干中的“整體思想”是解題的關鍵.21.(1)白紙有100噸,作業(yè)本有90噸;(2)69520元【分析】(1)設白紙有噸,作業(yè)本有噸,根據(jù)共支出公路運費4200元,鐵路運費26280元.列出二元一次方程組,解之即可;(2)由銷售款(白紙的購進款與運輸費的和),進行計算即可.【詳解】解:(1)設白紙有噸,作業(yè)本有噸,由題意,得,整理得:,解得.答:白紙有100噸,作業(yè)本有90噸;(2)(元).答:這批作業(yè)本的銷售款比白紙的購進款與運輸費的和多69520元.【點睛】本題考查了二元一次方程組的應用,解題的關鍵是找準等量關系,正確列出二元一次方程組.22.(1)=6;(2)a=3,b=78或a=7,b=78.【分析】(1)=(217-127)÷15=6;(2)分1≤a<5,a=5,5<a≤9三種情形討論計算.【詳解】(1)當,時,可以得到217,127.較大三位數(shù)減去較小三位數(shù)的差為,而,∴.(2)當,時,可以得a50,5a0.三位數(shù)分別為100a+50,500+10a,當1≤a<5時,(500+10a)-(100a+50)=450-90a,而,∴=,∴=;當a=5時,(500+10a)-(100a+50)=0,而,∴=0,∴=0;當5<a≤9時,(100a+50)-(500+10a)=90a-450,而,∴=,∴=a-5;當,時,可以得900+10x+8,100x+98.∵,∴(900+10x+8)-(100x+98)=810-90x,而,∴=,,∴=;當1≤a<5時,5-a+27-3x=8,∴a+3x=24,∴當a=1時,x=(舍去),當a=2時,x=(舍去),當a=3時,x=7,當a=4時,x=(舍去),∴a=3,b=78;當a=5時,則27-3x=8,∴x=(舍去),當5<a≤9時,則a-5+27-3x=8,∴3x-a=14,∴當a=6時,x=(舍去),當a=7時,x=7,當a=8時,x=(舍去),當a=9時,x=(舍去),∴a=7,b=78;綜上所述,a=3,b=78或a=7,b=78.【點睛】本題考查了新定義問題和二元一次方程的整數(shù)解,準確理解新定義的意義,靈活運用分類思想和枚舉法是解題的關鍵.23.(1)(-1,-2);(2)①結論:直線l⊥x軸.證明見解析;②結論:(s-m)+(t-n)=0.證明見解析【分析】(1)利用非負數(shù)的性質(zhì)求出a,b的值,可得結論.(2)①求出A,D的縱坐標,證明AD∥x軸,可得結論.②判斷出D(m+1,n-1),利用待定系數(shù)法,構建方程組解決問題即可.【詳解】解:(1),又,,,,,點先向右平移2個單位,再向下平移1個單位得到點,.(2)①結論:直線軸.理由:,,,向右平移個單位,再向下平移1個單位得到點,,,的縱坐標相同,軸,直線,直線軸.②結論:.理由:是直線上一點,連接,且的最小值為1,,點,及點都是關于,的二元一次方程的解為坐標的點,,①②得到,,③②得到,,,,.【點睛】本題考查坐標與圖形變化-平移,非負數(shù)的性質(zhì),待定系數(shù)法等知識,解題的關鍵是熟練掌握平移變換的性質(zhì),學會利用參數(shù)解決問題,屬于中考??碱}型.24.(1)是.(2)a的最大值為,最小值為;(3)【分析】(1)先求解當時,的最大值與最小值,再根據(jù)定義判斷即可;(2)當時,得分<,分別求解在內(nèi)時的最大值與最小值,再列不等式組即可得到答案;(3)當時,分,兩種情況分別求解的最大值與最小值,再列不等式(組)求解即可.【詳解】解:(1)當時,取最大值,當時,取最小值所以代數(shù)式是的“湘一代數(shù)式”.故答案為:是.(2)∵,∴0≤|x|≤2,∴①當a≥0時,x=0時,有最大值為,x=2或-2時,有最小值為所以可得不等式組,由①得:由②得:所以:②a<0時,x=0時,有最小值為,x=2或-2時,的有大值為所以可得不等式組,由①得:由②得:所以:<,綜上①②可得,所以a的最大值為,最小值為.(3)是的“湘一代數(shù)式”,當時,的最大值是最小值是當時,當時,取最小值當時,取最大值,解得:綜上:的取值范圍是:【點睛】本題考查的是新定義情境下的不等式或不等式組的應用,理解定義列不等式(組)是解題的關鍵.25.(1);(2)【分析】(1)根據(jù)題意設盒底邊長,接口的寬度,分別為,,根據(jù)題意列方程組,再根據(jù)長寬高求得體積;(2)分別設第一個月和第二個月的銷售量為盒,根據(jù)題意列出方程和不等式組,根據(jù)不等式確定二元一次方程的解,兩個月的銷售總量為盒【詳解】(1)設設盒底邊長為,接口的寬度為,則盒高是,根據(jù)題意得:解得:茶葉盒的容積是:答:該茶葉盒的容積是(2)設第一個月銷售了盒,第二個月銷售了盒,根據(jù)題意得:化簡得:①第一個月只售出不到一半但超過三分之一的量即由①得:解得:是整數(shù),所以為5的倍數(shù)或者或者答:這批茶葉共進了或者盒.【點睛】本題考查了二元一次方程組的應用,一元一次不等式組的求解,理解題意列出方程組和不等式組是解題的關鍵.26.(1)x=-1或x=5;(2)1≤x≤3;(3)x>5或x<-3;(4)a≥6【分析】(1)利用在數(shù)軸上到2對應的點的距離等于3的點對應的數(shù)求解即可;(2)先求出|x-2|=3的解,再求|x-2|≤3的解集即可;(3)先在數(shù)軸上找出|x-4|+|x+2|=8的解,即可得出不等式|x-4|+|x+2|>8的解集;(4)原問題轉(zhuǎn)化為:a大于或等于|x+2|+|x-4|最大值,進行分類討論,即可解答.【詳解】解:(1)∵在數(shù)軸上到2對應的點的距離等于3的點對應的數(shù)為-1或5,∴方程|x-2|=3的解為x=-1或x=5;(2)在數(shù)軸上找出|x-2|=1的解.∵在數(shù)軸上到2對應的點的距離等于1的點對應的數(shù)為1或3,∴方程|x-2|=1的解為x=1或x=3,∴不等式|x-2|≤1的解集為1≤x≤3.(3)在數(shù)軸上找出|x-4|+|x+2|=8的解.由絕對值的幾何意義知,該方程就是求在數(shù)軸上到4和-2對應的點的距離之和等于8的點對應的x的值.∵在數(shù)軸上4和-2對應的點的距離為6,∴滿足方程的x對應的點在4的右邊或-2的左邊.若x對應的點在4的右邊,可得x=5;若x對應的點在-2的左邊,可得x=-3,∴方程|x-4|+|x+2|=8的解是x=5或x=-3,∴不等式|x-4|+|x+2|>8的解集為x>5或x<-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論