版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
數(shù)學(xué)蘇教七年級(jí)下冊(cè)期末解答題壓軸模擬測試試題(比較難)答案一、解答題1.如圖,在中,是高,是角平分線,,.()求、和的度數(shù).()若圖形發(fā)生了變化,已知的兩個(gè)角度數(shù)改為:當(dāng),,則__________.當(dāng),時(shí),則__________.當(dāng),時(shí),則__________.當(dāng),時(shí),則__________.()若和的度數(shù)改為用字母和來表示,你能找到與和之間的關(guān)系嗎?請(qǐng)直接寫出你發(fā)現(xiàn)的結(jié)論.2.如圖①,將一副直角三角板放在同一條直線AB上,其中∠ONM=30°,∠OCD=45°.(1)將圖①中的三角板OMN沿BA的方向平移至圖②的位置,MN與CD相交于點(diǎn)E,求∠CEN的度數(shù);(2)將圖①中的三角板OMN繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn),使∠BON=30°,如圖③,MN與CD相交于點(diǎn)E,求∠CEN的度數(shù);(3)將圖①中的三角板OMN繞點(diǎn)O按每秒30°的速度按逆時(shí)針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,在第____________秒時(shí),直線MN恰好與直線CD垂直.(直接寫出結(jié)果)3.如圖所示,已知射線.點(diǎn)E、F在射線CB上,且滿足,OE平分(1)求的度數(shù);(2)若平行移動(dòng)AB,那么的值是否隨之發(fā)生變化?如果變化,找出變化規(guī)律.若不變,求出這個(gè)比值;(3)在平行移動(dòng)AB的過程中,是否存在某種情況,使?若存在,求出其度數(shù).若不存在,請(qǐng)說明理由.4.問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度數(shù).小明的思路是:如圖2,過P作PE∥AB,通過平行線性質(zhì),可得∠APC=50°+60°=110°.問題遷移:(1)如圖3,AD∥BC,點(diǎn)P在射線OM上運(yùn)動(dòng),當(dāng)點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之間有何數(shù)量關(guān)系?請(qǐng)說明理由;(2)在(1)的條件下,如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請(qǐng)你直接寫出∠CPD、∠α、∠β間的數(shù)量關(guān)系.5.如圖,直線,一副直角三角板中,.(1)若如圖1擺放,當(dāng)平分時(shí),證明:平分.(2)若如圖2擺放時(shí),則(3)若圖2中固定,將沿著方向平移,邊與直線相交于點(diǎn),作和的角平分線相交于點(diǎn)(如圖3),求的度數(shù).(4)若圖2中的周長,現(xiàn)將固定,將沿著方向平移至點(diǎn)與重合,平移后的得到,點(diǎn)的對(duì)應(yīng)點(diǎn)分別是,請(qǐng)直接寫出四邊形的周長.(5)若圖2中固定,(如圖4)將繞點(diǎn)順時(shí)針旋轉(zhuǎn),分鐘轉(zhuǎn)半圈,旋轉(zhuǎn)至與直線首次重合的過程中,當(dāng)線段與的一條邊平行時(shí),請(qǐng)直接寫出旋轉(zhuǎn)的時(shí)間.6.在△ABC中,∠ABC=∠ACB,點(diǎn)D在直線BC上(不與B、C重合),點(diǎn)E在直線AC上(不與A、C重合),且∠ADE=∠AED.(1)如圖1,若∠ABC=50°,∠AED=80°,則∠CDE=°,此時(shí),=.(2)若點(diǎn)D在BC邊上(點(diǎn)B、C除外)運(yùn)動(dòng)(如圖1),試探究∠BAD與∠CDE的數(shù)量關(guān)系,并說明理由;(3)若點(diǎn)D在線段BC的延長線上,點(diǎn)E在線段AC的延長線上(如圖2),其余條件不變,請(qǐng)直接寫出∠BAD與∠CDE的數(shù)量關(guān)系:.(4)若點(diǎn)D在線段CB的延長線上(如圖3),點(diǎn)E在直線AC上,∠BAD=26°,其余條件不變,則∠CDE=(友情提醒:可利用圖3畫圖分析).7.如圖1,直線MN與直線AB、CD分別交于點(diǎn)E、F,∠1與∠2互補(bǔ).(1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;(2)如圖2,∠BEF與∠EFD的角平分線交于點(diǎn)P,EP與CD交于點(diǎn)G,點(diǎn)H是MN上一點(diǎn),且GH⊥EG,求證:PF//GH.(3)如圖3,在(2)的條件下,連接PH,K是GH上一點(diǎn)使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請(qǐng)求出其值若變化,說明理由.8.(數(shù)學(xué)經(jīng)驗(yàn))三角形的中線,角平分線,高是三角形的重要線段,我們知道,三角形的3條高所在直線交于同一點(diǎn).(1)①如圖1,△ABC中,∠A=90°,則△ABC的三條高所在的直線交于點(diǎn);②如圖2,△ABC中,∠BAC>90°,已知兩條高BE,AD,請(qǐng)你僅用一把無刻度的直尺(僅用于過任意兩點(diǎn)作直線、連接任意兩點(diǎn)、延長任意線段)畫出△ABC的第三條高.(不寫畫法,保留作圖痕跡).(綜合應(yīng)用)(2)如圖3,在△ABC中,∠ABC>∠C,AD平分∠BAC,過點(diǎn)B作BE⊥AD于點(diǎn)E.①若∠ABC=80°,∠C=30°,則∠EBD=;②請(qǐng)寫出∠EBD與∠ABC,∠C之間的數(shù)量關(guān)系,并說明理由.(拓展延伸)(3)三角形的中線將三角形分成面積相等的兩部分,如果兩個(gè)三角形的高相同,則他們的面積比等于對(duì)應(yīng)底邊的比.如圖4,M是BC上一點(diǎn),則有.如圖5,△ABC中,M是BC上一點(diǎn)BM=BC,N是AC的中點(diǎn),若三角形ABC的面積是m請(qǐng)直接寫出四邊形CMDN的面積.(用含m的代數(shù)式表示)9.如圖,在△ABC中,∠B=30°,∠C>∠B,AE平分∠BAC,交BC邊于點(diǎn)E.(1)如圖1,過點(diǎn)A作AD⊥BC于D,若已知∠C=50°,則∠EAD的度數(shù)為;(2)如圖2,過點(diǎn)A作AD⊥BC于D,若AD恰好又平分∠EAC,求∠C的度數(shù);(3)如圖3,CF平分△ABC的外角∠BCG,交AE的延長線于點(diǎn)F,作FD⊥BC于D,設(shè)∠ACB=n°,試求∠DFE﹣∠AFC的值;(用含有n的代數(shù)式表示)(4)如圖4,在圖3的基礎(chǔ)上分別作∠BAE和∠BCF的角平分線,交于點(diǎn)F1,作F1D1⊥BC于D1,設(shè)∠ACB=n°,試直接寫出∠D1F1A﹣∠AF1C的值.(用含有n的代數(shù)式表示)10.已知:射線(1)如圖1,的角平分線交射線與點(diǎn),若,求的度數(shù).(2)如圖2,若點(diǎn)在射線上,平分交于點(diǎn),平分交于點(diǎn),,求的度數(shù).(3)如圖3,若,依次作出的角平分線,的角平分線,的角平分線,的角平分線,其中點(diǎn),,,,,都在射線上,直接寫出的度數(shù).【參考答案】一、解答題1.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當(dāng)時(shí),;當(dāng)時(shí),.【分析】(1)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),進(jìn)而可求和的度數(shù);解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)當(dāng)時(shí),;當(dāng)時(shí),.【分析】(1)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),進(jìn)而可求和的度數(shù);(2)先利用三角形內(nèi)角和定理求出的度數(shù),再根據(jù)角平分線和高的性質(zhì)分別得出和的度數(shù),則前三問利用即可得出答案,第4問利用即可得出答案;(3)按照(2)的方法,將相應(yīng)的數(shù)換成字母即可得出答案.【詳解】(1)∵,,∴.∵平分,∴.∵是高,,,,.(2)當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng),時(shí),∵,,∴.∵平分,∴.∵是高,,,.(3)當(dāng)時(shí),即時(shí),∵,,∴.∵平分,∴.∵是高,,,;當(dāng)時(shí),即時(shí),∵,,∴.∵平分,∴.∵是高,,,;綜上所述,當(dāng)時(shí),;當(dāng)時(shí),.【點(diǎn)睛】本題主要考查三角形內(nèi)角和定理和三角形的角平分線,高,掌握三角形內(nèi)角和定理和直角三角形兩銳角互余是解題的關(guān)鍵.2.(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形內(nèi)角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根據(jù)兩直線平行,同旁內(nèi)角解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形內(nèi)角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)即可求出∠CEN的度數(shù).(3)畫出圖形,求出在MN⊥CD時(shí)的旋轉(zhuǎn)角,再除以30°即得結(jié)果.【詳解】解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°;(2)∵∠BON=30°,∠N=30°,∴∠BON=∠N,∴MN∥CB.∴∠OCD+∠CEN=180°,∵∠OCD=45°∴∠CEN=180°-45°=135°;(3)如圖,MN⊥CD時(shí),旋轉(zhuǎn)角為360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒時(shí),直線MN恰好與直線CD垂直.【點(diǎn)睛】本題以學(xué)生熟悉的三角板為載體,考查了三角形的內(nèi)角和、平行線的判定和性質(zhì)、垂直的定義和旋轉(zhuǎn)的性質(zhì),前兩小題難度不大,難點(diǎn)是第(3)小題,解題的關(guān)鍵是畫出適合題意的幾何圖形,弄清求旋轉(zhuǎn)角的思路和方法,本題的第一種情況是將旋轉(zhuǎn)角∠DOM放在四邊形DOMF中,用四邊形內(nèi)角和求解,第二種情況是用周角減去∠DOM的度數(shù).3.(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2解析:(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2)根據(jù)平行線的性質(zhì),即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根據(jù)∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值為1:2.(3)設(shè)∠AOB=x,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等表示出∠CBO=∠AOB=x,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和表示出∠OEC,然后利用三角形的內(nèi)角和等于180°列式表示出∠OBA,然后列出方程求解即可.【詳解】(1)∵CB∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB,OE平分∠COF∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=40°;∴∠EOB=40°;(2)∠OBC:∠OFC的值不發(fā)生變化∵CB∥OA∴∠OBC=∠BOA,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2(3)當(dāng)平行移動(dòng)AB至∠OBA=60°時(shí),∠OEC=∠OBA.設(shè)∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【點(diǎn)睛】本題主要考查了平行線、角平分線的性質(zhì)以及三角形內(nèi)角和定理,熟記各性質(zhì)并準(zhǔn)確識(shí)圖理清圖中各角度之間的關(guān)系是解題的關(guān)鍵.4.(1),理由見解析;(2)當(dāng)點(diǎn)P在B、O兩點(diǎn)之間時(shí),;當(dāng)點(diǎn)P在射線AM上時(shí),.【分析】(1)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠C解析:(1),理由見解析;(2)當(dāng)點(diǎn)P在B、O兩點(diǎn)之間時(shí),;當(dāng)點(diǎn)P在射線AM上時(shí),.【分析】(1)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分兩種情況:①點(diǎn)P在A、M兩點(diǎn)之間,②點(diǎn)P在B、O兩點(diǎn)之間,分別畫出圖形,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出結(jié)論.【詳解】解:(1)∠CPD=∠α+∠β,理由如下:如圖,過P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)當(dāng)點(diǎn)P在A、M兩點(diǎn)之間時(shí),∠CPD=∠β-∠α.理由:如圖,過P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;當(dāng)點(diǎn)P在B、O兩點(diǎn)之間時(shí),∠CPD=∠α-∠β.理由:如圖,過P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【點(diǎn)睛】本題考查了平行線的性質(zhì)的運(yùn)用,主要考核了學(xué)生的推理能力,解決問題的關(guān)鍵是作平行線構(gòu)造內(nèi)錯(cuò)角,利用平行線的性質(zhì)進(jìn)行推導(dǎo).解題時(shí)注意:問題(2)也可以運(yùn)用三角形外角性質(zhì)來解決.5.(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運(yùn)用角平分線定義及平行線性質(zhì)即可證得結(jié)論;(2)如圖2,過點(diǎn)E作EK∥MN,利用平行線性解析:(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運(yùn)用角平分線定義及平行線性質(zhì)即可證得結(jié)論;(2)如圖2,過點(diǎn)E作EK∥MN,利用平行線性質(zhì)即可求得答案;(3)如圖3,分別過點(diǎn)F、H作FL∥MN,HR∥PQ,運(yùn)用平行線性質(zhì)和角平分線定義即可得出答案;(4)根據(jù)平移性質(zhì)可得D′A=DF,DD′=EE′=AF=5cm,再結(jié)合DE+EF+DF=35cm,可得出答案;(5)設(shè)旋轉(zhuǎn)時(shí)間為t秒,由題意旋轉(zhuǎn)速度為1分鐘轉(zhuǎn)半圈,即每秒轉(zhuǎn)3°,分三種情況:①當(dāng)BC∥DE時(shí),②當(dāng)BC∥EF時(shí),③當(dāng)BC∥DF時(shí),分別求出旋轉(zhuǎn)角度后,列方程求解即可.【詳解】(1)如圖1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°?∠PEF=180°?120°=60°,∴∠MFD=∠MFE?∠DFE=60°?30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如圖2,過點(diǎn)E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF?∠KEA,又∵∠DEF=60°.∴∠PDE=60°?45°=15°,故答案為:15°;(3)如圖3,分別過點(diǎn)F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA?∠LFA,∵∠FGQ和∠GFA的角平分線GH、FH相交于點(diǎn)H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°?∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=∠HFL=∠HFA?∠LFA=75°?45°=30°,∴∠GFL=∠GFA?∠LFA=150°?45°=105°,∴∠RHG=∠QGH=∠FGQ=(180°?105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如圖4,∵將△DEF沿著CA方向平移至點(diǎn)F與A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四邊形DEAD′的周長為45cm;(5)設(shè)旋轉(zhuǎn)時(shí)間為t秒,由題意旋轉(zhuǎn)速度為1分鐘轉(zhuǎn)半圈,即每秒轉(zhuǎn)3°,分三種情況:BC∥DE時(shí),如圖5,此時(shí)AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF時(shí),如圖6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF時(shí),如圖7,延長BC交MN于K,延長DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°?∠ACB=90°,∴∠CAK=90°?∠BKA=15°,∴∠CAE=180°?∠EAM?∠CAK=180°?45°?15°=120°,∴3t=120,解得:t=40,綜上所述,△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)的時(shí)間為10s或30s或40s時(shí),線段BC與△DEF的一條邊平行.【點(diǎn)睛】本題主要考查了平行線性質(zhì)及判定,角平分線定義,平移的性質(zhì)等,添加輔助線,利用平行線性質(zhì)是解題關(guān)鍵.6.(1)30,2;(2)∠BAD=2∠CDE,理由見解析;(3)∠BAD=2∠CDE;(4)77°或13°.【分析】(1)利用三角形內(nèi)角和定理以及三角形的外角的性質(zhì)解決問題即可;(2)結(jié)論:∠B解析:(1)30,2;(2)∠BAD=2∠CDE,理由見解析;(3)∠BAD=2∠CDE;(4)77°或13°.【分析】(1)利用三角形內(nèi)角和定理以及三角形的外角的性質(zhì)解決問題即可;(2)結(jié)論:∠BAD=2∠CDE.設(shè)∠B=∠C=x,∠AED=∠ADE=y,則∠BAC=180°-2x,∠CDE=yx,∠DAE=180°-2y,推出∠BAD=∠BAC-∠DAE=2y-2x=2(y-x),由此可得結(jié)論.(3)如圖②中,結(jié)論:∠BAD=2∠CDE.解決方法類似(2).(4)分兩種情形:①當(dāng)點(diǎn)E在CA的延長線上,設(shè)∠ABC=∠C=x,∠AED=∠ADE=y,則∠BAC=180°-2x,∠CDE=180°-(y+x),∠DAE=180°-2y,由題意,∠BAD=180°-∠BAC-∠DAE=2x+2y-180°=22°,推出x+y=101°,可得結(jié)論.②如圖④中,當(dāng)點(diǎn)E在AC的延長線上時(shí),同法可求.【詳解】解:(1)如圖①中,∵∠ABC=∠ACB=50°,∴∠BAC=180°﹣50°﹣50°=80°,∵∠AED=∠CDE+∠C,∴∠CDE=80°﹣50°=30°,∵∠ADE=∠AED=80°,∴∠DAE=180°﹣80°﹣80°=20°,∴∠BAD=∠BAC﹣∠DAE=80°﹣20°=60°,∴=2.故答案為30,2;(2)結(jié)論:∠BAD=2∠CDE.理由:設(shè)∠B=∠C=x,∠AED=∠ADE=y(tǒng),則∠BAC=180°﹣2x,∠CDE=y(tǒng)﹣x,∠DAE=180°﹣2y,∴∠BAD=∠BAC﹣∠DAE=2y﹣2x=2(y﹣x),∴∠BAD=2∠CDE;(3)如圖②中,結(jié)論:∠BAD=2∠CDE.理由:設(shè)∠B=∠ACB=x,∠AED=∠ADE=y(tǒng),則∠BAC=180°﹣2x,∠CDE=180°﹣(y+x),∠DAE=180°﹣2y,∴∠BAD=∠BAC+∠DAE=360°﹣2(x+y),∴∠BAD=2∠CDE.故答案為:∠BAD=2∠CDE;(4)如圖③中,設(shè)∠ABC=∠C=x,∠AED=∠ADE=y(tǒng),則∠BAC=180°﹣2x,∠CDE=180°﹣(y+x),∠DAE=180°﹣2y,∴∠BAD=180°﹣∠BAC﹣∠DAE=2x+2y﹣180°=26°,∴x+y=103°∴∠CDE=180°﹣103°=77°.如圖④中,當(dāng)點(diǎn)E在AC的延長線上時(shí),設(shè)∠ABC=∠ACB=x,∠AED=∠ADE=y(tǒng),則∠ADB=x﹣26°,∠CDE=y(tǒng)﹣(x﹣26°),∵∠ACB=∠CDE+∠AED,∴x=y(tǒng)+y﹣(x﹣26°),∴x﹣y=13°,∴∠CDE=x﹣y=13°故答案為:77°或13°.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了等腰三角形的性質(zhì),三角形內(nèi)角和定理,三角形的外角的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)解決問題,屬于中考??碱}型.7.(1)見詳解;(2)見詳解;(3)∠HPQ的大小不發(fā)生變化,理由見詳解.【分析】(1)根據(jù)同旁內(nèi)角互補(bǔ),兩條直線平行即可判斷直線AB與直線CD平行;(2)先根據(jù)兩條直線平行,同旁內(nèi)角互補(bǔ),再根解析:(1)見詳解;(2)見詳解;(3)∠HPQ的大小不發(fā)生變化,理由見詳解.【分析】(1)根據(jù)同旁內(nèi)角互補(bǔ),兩條直線平行即可判斷直線AB與直線CD平行;(2)先根據(jù)兩條直線平行,同旁內(nèi)角互補(bǔ),再根據(jù)∠BEF與∠EFD的角平分線交于點(diǎn)P,可得∠EPF=90°,進(jìn)而證明PF∥GH;(3)根據(jù)角平分線定義,及角的和差計(jì)算即可求得∠HPQ的度數(shù),進(jìn)而即可得到結(jié)論.【詳解】解:(1)AB∥CD,理由如下:∵∠1與∠2互補(bǔ),∴∠1+∠2=180°,又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF與∠EFD的角平分線交于點(diǎn)P,∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)∵∠PHK=∠HPK,∴∠PKG=2∠HPK.又∵GH⊥EG,∴∠KPG=90°?∠PKG=90°?2∠HPK.∴∠EPK=180°?∠KPG=90°+2∠HPK.∵PQ平分∠EPK,∴∠QPK=∠EPK=45°+∠HPK.∴∠HPQ=∠QPK?∠HPK=45°.∴∠HPQ的大小不發(fā)生變化.【點(diǎn)睛】本題考查了平行線的判定和性質(zhì)、余角和補(bǔ)角,解決本題的關(guān)鍵是綜合運(yùn)用角平分線的定義、平行線的性質(zhì)、余角和補(bǔ)角.8.(1)①A;②見解析;(2)①25°;②2∠EBD=∠ABC﹣∠ACB;(3)m.【分析】(1)①由直角三角形三條高的定義即可得出結(jié)論;②分別延長BE,DA,兩者交于F,連接CF交BA的延長線解析:(1)①A;②見解析;(2)①25°;②2∠EBD=∠ABC﹣∠ACB;(3)m.【分析】(1)①由直角三角形三條高的定義即可得出結(jié)論;②分別延長BE,DA,兩者交于F,連接CF交BA的延長線于H,CH即為所求;(2)①由三角形內(nèi)角和定理和角平分線的性質(zhì)可以得出∠BAE=∠BAC=35°,再由直角三角形的性質(zhì)得∠ABE=55°,即可求解;②由三角形內(nèi)角和定理和角平分線的性質(zhì)求解即可;(3)連接CD,由中線的性質(zhì)得S△ADN=S△CDN,同理:S△ABN=S△CBN,設(shè)S△ADN=S△CDN=a,S△ABN=S△CBN=m,再求出S△CDM=S△BCD=,S△ACM=S△ABC=m,利用面積關(guān)系求解即可.【詳解】解:(1)①∵直角三角形三條高的交點(diǎn)為直角頂點(diǎn),∠A=90°,∴△ABC的三條高所在直線交于點(diǎn)A,故答案為:A;②如圖,分別延長BE,DA,兩者交于F,連接CF交BA的延長線于H,CH即為所求;(2)①∵∠ABC=80°,∠ACB=30°,∴∠BAC=70°,∵AD平分∠BAC,∴∠BAE=∠BAC=35°,∵BE⊥AD,∴∠AEB=90°,∴∠ABE=90°﹣35°=55°,∴∠EBD=∠ABC﹣∠ABE=80°﹣55°=25°,故答案為:25°;②∠EBD與∠ABC,∠C之間的數(shù)量關(guān)系為:2∠EBD=∠ABC﹣∠ACB∵BE⊥AD,∴∠AEB=90°,∴∠ABE=90°﹣∠BAD,∴∠EBD=∠ABC﹣∠ABE=∠ABC+∠BAD﹣90°,∵AD平分∠BAC,∴∠BAD=∠CAD=∠BAC,∵∠BAC=180°﹣∠ABC﹣∠ACB,∴∠BAD=90°﹣∠ABC﹣∠ACB,∴∠EBD=∠ABC+∠BAD﹣90°=∠ABC+90°﹣∠ABC﹣∠C﹣90°=∠ABC﹣∠C,∴2∠EBD=∠ABC﹣∠ACB,故答案為:2∠EBD=∠ABC﹣∠ACB;(3)連接CD,如圖所示:∵N是AC的中點(diǎn),∴,∴S△ADN=S△CDN,同理:S△ABN=S△CBN,設(shè)S△ADN=S△CDN=a,∵△ABC的面積是m,∴S△ABN=S△CBN=m,∴S△BCD=S△ABD=m﹣a,∵BM=BC,∴,∴,,∴S△CDM=3S△BDM,S△ACM=3S△ABM,∴S△CDM=S△BCD=×(m﹣a)=,S△ACM=S△ABC=m,∵S△ACM=S四邊形CMDN+S△ADN=S△CDM+S△CDN+S△ADN,即:,解得:a=,∴S四邊形CMDN=S△CDM+S△CDN=,【點(diǎn)睛】本題主要考查了三角形的高,三角形的中線,三角形內(nèi)角和,三角形面積,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識(shí)進(jìn)行求解.9.(1)10°;(2)∠C的度數(shù)為70°;(3)∠DFE﹣∠AFC的值為;(4)∠D1F1A﹣∠AF1C的值為.【分析】(1)根據(jù)∠EAD=∠EAC-∠DAC,求出∠EAC,∠DAC即可解決問題.解析:(1)10°;(2)∠C的度數(shù)為70°;(3)∠DFE﹣∠AFC的值為;(4)∠D1F1A﹣∠AF1C的值為.【分析】(1)根據(jù)∠EAD=∠EAC-∠DAC,求出∠EAC,∠DAC即可解決問題.(2)設(shè)∠CAD=x,則∠EAD=∠CAD=x,∠EAB=∠EAC=2x,利用三角形內(nèi)角和定理構(gòu)建方程求出x即可解決問題.(3)設(shè)∠CAD=x,則∠EAD=∠CAD=x,∠EAB=∠EAC=2x,用n,x表示出∠DFE,∠AFC,再結(jié)合三角形內(nèi)角和定理解決問題即可.(4)設(shè)∠FAC=∠FAB=y.用n,x表示出∠D1F1A,∠AF1C,再結(jié)合三角形內(nèi)角和定理解決問題即可.【詳解】解:(1)∵∠B=30°,∠C=50°,∴∠BAC=180°-∠B-∠C=100°,∵AE平分∠BAC,∴∠CAE=∠BAC=50°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°-50°=40°,∴∠EAD=∠EAC-∠DAC=50°-40°=10°.(2)設(shè)∠CAD=x,則∠EAD=∠CAD=x,∠EAB=∠EAC=2x,∵AD⊥EC,∴∠ADE=∠ADC=90°,∴∠AED+∠EA
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年寶石、玉石礦項(xiàng)目建議書
- 護(hù)理課件設(shè)計(jì)與教學(xué)實(shí)踐交流
- 心電圖護(hù)理中的遠(yuǎn)程醫(yī)療應(yīng)用
- 中專護(hù)理實(shí)踐操作教學(xué)視頻
- 肌膚護(hù)理與季節(jié)變化
- 護(hù)理質(zhì)量與醫(yī)療糾紛預(yù)防
- DSA護(hù)理質(zhì)量評(píng)估與改進(jìn)
- 員工個(gè)人所得稅知識(shí)培訓(xùn)課件
- 斜視患者的社交能力培養(yǎng)
- 吸氧需不需要濕化
- 國開《廣告調(diào)查與預(yù)測》形考作業(yè)1-4答案
- 鈑金折彎工藝培訓(xùn)課件
- 肛門指檢課件
- 輸液空氣栓塞課件
- 城市更新交通系統(tǒng)優(yōu)化實(shí)施技術(shù)方案
- 高一年級(jí)分科主題班會(huì)+課件-2025-2026學(xué)年上學(xué)期
- 水果店代加工合同協(xié)議書
- 2025年南京市事業(yè)單位招聘考試衛(wèi)生類預(yù)防醫(yī)學(xué)專業(yè)知識(shí)試卷
- 固定污染源采樣課件
- 2025年綜合類-衛(wèi)生系統(tǒng)招聘考試-護(hù)士招聘考試歷年真題摘選帶答案(5卷套題【單選100題】)
- 如何制作低壓電纜頭
評(píng)論
0/150
提交評(píng)論