中考數(shù)學總復習《旋轉(zhuǎn)》考試彩蛋押題附完整答案詳解(名師系列)_第1頁
中考數(shù)學總復習《旋轉(zhuǎn)》考試彩蛋押題附完整答案詳解(名師系列)_第2頁
中考數(shù)學總復習《旋轉(zhuǎn)》考試彩蛋押題附完整答案詳解(名師系列)_第3頁
中考數(shù)學總復習《旋轉(zhuǎn)》考試彩蛋押題附完整答案詳解(名師系列)_第4頁
中考數(shù)學總復習《旋轉(zhuǎn)》考試彩蛋押題附完整答案詳解(名師系列)_第5頁
已閱讀5頁,還剩22頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

中考數(shù)學總復習《旋轉(zhuǎn)》考試彩蛋押題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、把四張撲克牌所擺放的順序與位置如下,小楊同學選取其中一張撲克牌把他顛倒后在放回原來的位置,那么撲克牌的擺放順序與位置都沒變化,那么小楊同學所選的撲克牌是(

)A. B. C. D.2、如圖,在小正三角形組成的網(wǎng)格中,已有個小正三角形涂黑,還需涂黑個小正三角形,使它們與原來涂黑的小正三角形組成的新圖案恰有三條對稱軸,則的最小值為()A. B. C. D.3、如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點C按順時針方向旋轉(zhuǎn)到點D落在AB邊上,此時得到△EDC,斜邊DE交AC邊于點F,則圖中陰影部分的面積為(

)A.3 B.1 C. D.4、下列運動形式屬于旋轉(zhuǎn)的是(

)A.在空中上升的氫氣球 B.飛馳的火車C.時鐘上鐘擺的擺動 D.運動員擲出的標槍5、如圖,與關(guān)于成中心對稱,不一定成立的結(jié)論是(

)A. B.C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在Rt△ABC中,∠ACB=90°,,點D為AB的中點,點P在AC上,且CP=1,將CP繞點C在平面內(nèi)旋轉(zhuǎn),點P的對應點為點Q,連接AQ,DQ.當∠ADQ=90°時,AQ的長為______.2、如圖,已知:,,以AB為邊作正方形ABCD,使P、D兩點落在直線AB的兩側(cè).當時,則PD的長為______.3、如圖,△ABC中,AB=6,DE∥AC,將△BDE繞點B順時針旋轉(zhuǎn)得到△BD′E′,點D的對應點D′落在邊BC上.已知BE′=5,D′C=4,則BC的長為______.4、如圖,在菱形中,,將菱形繞點逆時針方向旋轉(zhuǎn),對應得到菱形,點在上,與交于點,則的長是_____.5、如圖,在平面直角坐標系中,一次函數(shù)的圖像分別交、軸于點、,將直線繞點按順時針方向旋轉(zhuǎn),交軸于點,則直線的函數(shù)表達式是__________.三、解答題(5小題,每小題10分,共計50分)1、如圖,在由邊長為1個單位長度的小正方形組成的網(wǎng)格中,△ABC的頂點均為格點(網(wǎng)格線的交點).(1)將△ABC向上平移6個單位,再向右平移2個單位,得到,請畫出﹔(2)以邊AC的中點O為旋轉(zhuǎn)中心,將△ABC按逆時針方向旋轉(zhuǎn)180°,得到,請畫出.2、明遇到這樣一個問題:如圖①,在四邊形ABCD中,∠B=40°,∠C=50°,AB=CD,AD=2,BC=4,求四邊形ABCD的面積.(1)經(jīng)過思考小明想到如下方法:以BC為邊作正方形BCMN,將四邊形ABCD繞著正方形BCMN的中心按順時針方向旋轉(zhuǎn)90°,180°,270°,而分別得到四邊形FNBA,EMNF,DCME,則四邊形ADEF是________.(填一種特殊的平行四邊形)∴S四邊形ABCD=________.(2)解決問題:如圖③,在四邊形ABCD中,∠BAD=140°,∠CDA=160°,AB=CD,AD=6,BC=12,則四邊形ABCD的面積為多少?3、在RtABC中,∠ABC=90°,∠A=α,O為AC的中點,將點O沿BC翻折得到點,將ABC繞點順時針旋轉(zhuǎn),使點B與C重合,旋轉(zhuǎn)后得到ECF.(1)如圖1,旋轉(zhuǎn)角為.(用含α的式子表示)(2)如圖2,連BE,BF,點M為BE的中點,連接OM,①∠BFC的度數(shù)為.(用含α的式子表示)②試探究OM與BF之間的關(guān)系.(3)如圖3,若α=30°,請直接寫出的值為.4、如圖,等腰Rt△ABC中,∠A=45°,∠ABC=90°,點D在AC上,將△ABD繞點B沿順時針方向旋轉(zhuǎn)90°后,得到△CBE.(1)求∠DCE的度數(shù);(2)若AB=4,CD=3AD,求DE的長.5、如圖1,在△ABC中,∠BAC=90°,AB=AC,點D在邊AC上,CD⊥DE,且CD=DE,連接BE,取BE的中點F,連接DF.(1)請直接寫出∠ADF的度數(shù)及線段AD與DF的數(shù)量關(guān)系;(2)將圖1中的△CDE繞點C按逆時針旋轉(zhuǎn),①如圖2,(1)中∠ADF的度數(shù)及線段AD與DF的數(shù)量關(guān)系是否仍然成立?請說明理由;②如圖3,連接AF,若AC=3,CD=1,求S△ADF的取值范圍.-參考答案-一、單選題1、D【解析】【分析】根據(jù)題意,圖形是中心對稱圖形即可得出答案.【詳解】由題意可知,圖形是中心對稱圖形,可得答案為D,故選:D.【考點】本題考查了圖形的中心對稱的性質(zhì),掌握中心圖形的性質(zhì)是解題的關(guān)鍵.2、C【解析】【分析】由等邊三角形有三條對稱軸可得答案.【詳解】如圖所示,n的最小值為3.故選C.【考點】本題考查了利用軸對稱設計圖案,解題的關(guān)鍵是掌握常見圖形的性質(zhì)和軸對稱圖形的性質(zhì).3、D【解析】【分析】根據(jù)題意及旋轉(zhuǎn)的性質(zhì)可得是等邊三角形,則,,根據(jù)含30度角的直角三角形的性質(zhì),即可求得,由勾股定理即可求得,進而求得陰影部分的面積.【詳解】解:如圖,設與相交于點,,,,旋轉(zhuǎn),,是等邊三角形,,,,,,,,陰影部分的面積為故選D【考點】本題考查了等邊三角形的性質(zhì),勾股定理,含30度角的直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),利用含30度角的直角三角形的性質(zhì)是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)旋轉(zhuǎn)的定義逐一進行判斷即可得到正確的結(jié)論.【詳解】解:在空氣中上升的氫氣球,飛馳的火車,運動員擲出標槍屬于平移現(xiàn)象,時鐘上鐘擺的擺動屬于旋轉(zhuǎn)現(xiàn)象.故選:C.【考點】本題主要考查關(guān)于旋轉(zhuǎn)的知識,題目比較簡單,屬于基礎(chǔ)題目,大部分學生能夠正確完成,熟練掌握旋轉(zhuǎn)的定義是解決本題的關(guān)鍵.5、D【解析】【分析】根據(jù)中心對稱的性質(zhì)即可判斷.【詳解】解:對應點的連線被對稱中心平分,A,B正確;成中心對稱圖形的兩個圖形是全等形,那么對應線段相等,C正確;和不是對應角,D錯誤.故選:D.【考點】本題考查成中心對稱兩個圖形的性質(zhì):對應點的連線被對稱中心平分;成中心對稱圖形的兩個圖形是全等形.二、填空題1、或##或【解析】【分析】連接,根據(jù)題意可得,當∠ADQ=90°時,分點在線段上和的延長線上,且,勾股定理求得即可.【詳解】如圖,連接,在Rt△ABC中,∠ACB=90°,,,,,根據(jù)題意可得,當∠ADQ=90°時,點在上,且,,如圖,在中,,在中,故答案為:或.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),勾股定理,直角三角形斜邊上中線的性質(zhì),確定點的位置是解題的關(guān)鍵.2、【解析】【分析】由于AD=AB,∠DAB=90°,則把△APD繞點A順時針旋轉(zhuǎn)90°得到△AFB,AD與AB重合,PA旋轉(zhuǎn)到AF的位置,根據(jù)旋轉(zhuǎn)的性質(zhì)得到AP=AF,∠PAF=90°,PD=FB,則△APF為等腰直角三角形,得到∠APF=45°,,即有∠BPF=∠APB+∠APF=45°+45°=90°,然后在Rt△FBP中,根據(jù)勾股定理可計算出FB的長,即可得到PD的長.【詳解】解:∵AD=AB,∠DAB=90°,∴把△APD繞點A順時針旋轉(zhuǎn)90°得到△AFB,AD與AB重合,PA旋轉(zhuǎn)到FA的位置,如圖,∴AP=AF,∠PAF=90°,PD=FB,∴△APF為等腰直角三角形,∴∠APF=45°,,∴∠BPF=∠APB+∠APF=45°+45°=90°,在Rt△FBP中,PB=4,,∴由勾股定理得,∴,故答案為:【考點】本題考查了正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì),等腰直角三角形的判定和性質(zhì)以及勾股定理.正確的作出輔助線是解題關(guān)鍵.3、.【解析】【詳解】解:由旋轉(zhuǎn)可得,BE=BE'=5,BD=BD',∵D'C=4,∴BD'=BC﹣4,即BD=BC﹣4,∵DE∥AC,∴,即,解得BC=(負值已舍去),即BC的長為.故答案為.【考點】本題主要考查了旋轉(zhuǎn)的性質(zhì),解一元二次方程以及平行線分線段成比例定理的運用,解題時注意:對應點到旋轉(zhuǎn)中心的距離相等.解決問題的關(guān)鍵是依據(jù)平行線分線段成比例定理,列方程求解.4、【解析】【分析】連接交于,由菱形的性質(zhì)得出,,,由直角三角形的性質(zhì)求出,,得出,由旋轉(zhuǎn)的性質(zhì)得:,得出,證出,由直角三角形的性質(zhì)得出,,即可得出結(jié)果.【詳解】解:連接交于,如圖所示:∵四邊形是菱形,∴,,,∴,∴,∴,由旋轉(zhuǎn)的性質(zhì)得:,∴,∵四邊形是菱形,∴,∴,∴∴,∴,,∴;故答案為.【考點】考核知識點:菱形性質(zhì),旋轉(zhuǎn)性質(zhì).解直角三角形是關(guān)鍵.5、【解析】【分析】先根據(jù)一次函數(shù)求得、坐標,再過作的垂線,構(gòu)造直角三角形,根據(jù)勾股定理和正余弦公式求得的長度,得到點坐標,從而得到直線的函數(shù)表達式.【詳解】因為一次函數(shù)的圖像分別交、軸于點、,則,,則.過作于點,因為,所以由勾股定理得,設,則,根據(jù)等面積可得:,即,解得.則,即,所以直線的函數(shù)表達式是.【考點】本題綜合考察了一次函數(shù)的求解、勾股定理、正余弦公式,以及根據(jù)一次函數(shù)的解求一次函數(shù)的表達式,要學會通過作輔助線得到特殊三角形,以便求解.三、解答題1、(1)見解析(2)見解析【解析】【分析】(1)根據(jù)平移的方式確定出點A1,B1,C1的位置,再順次連接即可得到;(2)根據(jù)旋轉(zhuǎn)可得出確定出點A2,B2,C2的位置,再順次連接即可得到.(1)如圖,即為所作;(2)如圖,即為所作;【考點】本題考查作圖-旋轉(zhuǎn)變換與平移變換,解題的關(guān)鍵是理解題意,靈活運用所學知識解決問題.2、(1)正方形,3(2)S四邊形ABCD=【解析】【分析】(1)由旋轉(zhuǎn)的性質(zhì)得,證明四邊形ADEF是菱形,設正方形BCMN的中心為點O,連接OA、OD、OF,根據(jù)旋轉(zhuǎn)的性質(zhì)得到,,可得出,則,根據(jù)正方形的判定條件得到ADEF是正方形,根據(jù)求解即可;(2)以BC為邊作等邊三角形BCM,將四邊形ABCD繞著等邊三角形BCM的中心按順時針方向旋轉(zhuǎn)120°,240°,而分別得到四邊形MEAB,EMCD,則AD=AE=ED,根據(jù)S四邊形ABCD=(S△BCM-S△ADE)計算即可;(1)如圖,設正方形BCMN的中心為點O,連接OA、OD、OF,∵以BC為邊作正方形BCMN,將四邊形ABCD繞著正方形BCMN的中心按順時針方向旋轉(zhuǎn)90°,180°,270°,而分別得到四邊形FNBA,EMNF,DCME,∴,,,∴四邊形ADEF是菱形,,∴,∴菱形ADEF是正方形,∴;故答案是:正方形;3;(2)解:如圖,以BC為邊作等邊三角形BCM,將四邊形ABCD繞著等邊三角形BCM的中心按順時針方向旋轉(zhuǎn)120°,240°,而分別得到四邊形MEAB,EMCD,則AD=AE=ED,∴△ADE是等邊三角形,∴S四邊形ABCD=(S△BCM-S△ADE),∵AD=6,BC=12,∴易得△BCM和△ADE的高分別為6和3.∴S△BCM=×12×6=36,S△ADE=×6×3=9.∴S四邊形ABCD=×(36-9)=9.【考點】本題主要考查了正方形的判定和性質(zhì),等邊三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì),準確計算是解題的關(guān)鍵.3、(1);(2)①;②;(3)【解析】【分析】(1)連接OB,,,由,O為BC的中點,得到,則,,再由旋轉(zhuǎn)的性質(zhì)可得,,由此求解即可;(2)①連接,,由(1)可知(因為也是旋轉(zhuǎn)角),由旋轉(zhuǎn)的性質(zhì)可得,,則,可以得到,再由可以得到,由此即可求解;②連接OB,OE延長OM交EF于N,由①得,由旋轉(zhuǎn)的性質(zhì)可得,,然后證明,,得到,則,再證明△OBM≌△NEM得到,,從而推出MN為△BFE的中位線,得到,則;(3)連接與BF交于H,由,,可得,,由含30度角的直角三角形的性質(zhì)可以得到,,再由勾股定理可以得到,由此即可得到答案.【詳解】解:(1)如圖所示,連接OB,,,∵,O為BC的中點,∴,∴,∴,∵將點O沿BC翻折得到點,∴,由旋轉(zhuǎn)的性質(zhì)可得,,∴,∴旋轉(zhuǎn)角為,故答案為:;(2)①如圖所示,連接,,由(1)可知(因為也是旋轉(zhuǎn)角),由旋轉(zhuǎn)的性質(zhì)可得,,∴,∴,∵,∴,故答案為:;②如圖所示,連接OB,OE延長OM交EF于N,由①得,由旋轉(zhuǎn)的性質(zhì)可得,,∵,∴,∴,∵,∴,∴,∴,∴,∴∵M為BE的中點,∴,在△OBM和△NEM中,,∴△OBM≌△NEM(SAS),∴,,∴,∴N為EF的中點,∴MN為△BFE的中位線,∴,∴;(3)如圖所示,連接與BF交于H,∵,,∴,,∴,∵,∴,∴,∵,∴,∵,,∴,∵,∴.故答案為:.【考點】本題主要考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì)與判定,直角三角形斜邊上的中線,三角形中位線定理,含30度角的直角三角形的性質(zhì),勾股定理,平行線的性質(zhì)與判定等等,解題的關(guān)鍵在于能夠熟練掌握旋轉(zhuǎn)的性質(zhì).4、(1)90°;(2)【解析】【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)和等腰直角三角形的性質(zhì)即可得∠DCE的度數(shù);(2)根據(jù)勾股定理求出AC的長,根據(jù)CD=3AD,可得CD和AD的長,根據(jù)旋轉(zhuǎn)的性質(zhì)可得AD=EC,再根據(jù)勾股定理即可得DE的長.【詳解】解:(1)∵△ABC為等腰直角三角形,∴∠BAD=∠BCD=45°,由旋轉(zhuǎn)的性質(zhì)可知∠BAD=∠BCE=45°,∴∠DCE=∠BCE+∠BCA=45°+45°=90°;(2)∵BA=BC,∠ABC=90°,∴,∵CD=3AD,∴,,由旋轉(zhuǎn)的性質(zhì)可知:AD=EC=,∴.【考點】本題考查了旋轉(zhuǎn)的性質(zhì)、等腰直角三角形,解決本題的關(guān)鍵是掌握旋轉(zhuǎn)的性質(zhì).5、(1)∠ADF=45°,AD=DF;(2)①成立,理由見解析;②1≤S△ADF≤4.【解析】【分析】(1)延長DF交AB于H,連接AF,先證明△DEF≌△HBF,得BH=CD,再證明△ADH為等腰直角三角形,利用三線合一及等腰直角三角形邊的關(guān)系即可得到結(jié)論;(2)①過B作DE的平行線交DF延長線于H,連接AH、AF,先證明△DEF≌△HBF,延長ED交BC于M,再證明∠ACD=∠ABH,得△ACD≌△ABH,得AD=AH,等量代換可得∠DAH=90°,即△ADH為等腰直角三角形,利用三線合一及等腰直角三角形邊的關(guān)系即可得到結(jié)論;②先確定D點的軌跡,求出AD的最大值和最小值,代入S△ADF=求解即可.(1)解:∠ADF=45°,AD=DF,理由如下:延長DF交AB于H,連接AF,∵∠EDC=∠BAC=90°,∴DE∥AB,∴∠ABF=∠FED,∵F是BE中點,∴BF=EF,又∠BFH=∠DFE,∴△DEF≌△HBF,∴BH=DE,H

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論