版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》綜合測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,已知平行四邊形ABCD的面積為8,E、F分別是BC、CD的中點(diǎn),則△AEF的面積為()A.2 B.3 C.4 D.52、如圖,把正方形紙片ABCD沿對(duì)邊中點(diǎn)所在的直線對(duì)折后展開(kāi),折痕為MN,再過(guò)點(diǎn)B折疊紙片,使點(diǎn)A落在MN上的點(diǎn)F處,折痕為BE,若AB的長(zhǎng)為2,則FM的長(zhǎng)為()A.2 B. C. D.13、已知中,,,CD是斜邊AB上的中線,則的度數(shù)是()A. B. C. D.4、下列條件中,能判定四邊形是正方形的是()A.對(duì)角線相等的平行四邊形 B.對(duì)角線互相平分且垂直的四邊形C.對(duì)角線互相垂直且相等的四邊形 D.對(duì)角線相等且互相垂直的平行四邊形5、如圖,在矩形ABCD中,點(diǎn)E是BC的中點(diǎn),連接AE,點(diǎn)F是AE的中點(diǎn),連接DF,若AB=9,AD,則四邊形CDFE的面積是()A. B. C. D.54第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在□中,⊥于點(diǎn),⊥于點(diǎn).若,,且的周長(zhǎng)為40,則的面積為_(kāi)_______.2、如圖,在邊長(zhǎng)為1的菱形ABCD中,∠ABC=60°,將△ABD沿射線BD的方向平移得到△A'B'D',分別連接A'C,A'D,B'C,則A'C+B'C的最小值為_(kāi)____.3、如圖,在直角三角形ABC中,∠B=90°,點(diǎn)D是AC邊上的一點(diǎn),連接BD,把△CBD沿著B(niǎo)D翻折,點(diǎn)C落在AB邊上的點(diǎn)E處,得到△EBD,連接CE交BD于點(diǎn)F,BG為△EBD的中線.若BC=4,△EBG的面積為3,則CD的長(zhǎng)為_(kāi)___________4、如圖,四邊形AOBC是正方形,曲線CP1P2P3???叫做“正方形的漸開(kāi)線”,其中弧CP1,弧P1P2,弧P2P3,弧P3P4的圓心依次按點(diǎn)A,O,B,C循環(huán),點(diǎn)A的坐標(biāo)為(2,0),按此規(guī)律進(jìn)行下去,則點(diǎn)P2021的坐標(biāo)為_(kāi)____.5、已知如圖,點(diǎn)E,F(xiàn)分別在正方形的邊,上,,若,,則_________.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,已知四邊形ABCD是正方形,點(diǎn)E是AD邊上的一點(diǎn)(不與點(diǎn)A,D重合),連接CE,以CE為一邊作正方形CEFG,使點(diǎn)F,G與點(diǎn)A,B在CE的兩側(cè),連接BE并延長(zhǎng),交GD延長(zhǎng)線于點(diǎn)H.(1)如圖1,請(qǐng)判斷線段BE與GD的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由;(2)如圖2,連接BG,若AB=2,CE=,請(qǐng)你直接寫出的值.2、在△ABC中,AB=AC=x,BC=12,點(diǎn)D,E分別為BC,AC的中點(diǎn),線段BE的垂直平分線交邊BC于點(diǎn)F,(1)當(dāng)x=10時(shí),求線段AD的長(zhǎng).(2)x取何值時(shí),點(diǎn)F與點(diǎn)D重合.(3)當(dāng)DF=1時(shí),求x2的值.3、綜合與實(shí)踐(1)如圖1,在正方形ABCD中,點(diǎn)M、N分別在AD、CD上,若∠MBN=45°,則MN,AM,CN的數(shù)量關(guān)系為.(2)如圖2,在四邊形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,點(diǎn)M、N分別在AD、CD上,若∠MBN=∠ABC,試探索線段MN、AM、CN有怎樣的數(shù)量關(guān)系?請(qǐng)寫出猜想,并給予證明.(3)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點(diǎn)M、N分別在DA、CD的延長(zhǎng)線上,若∠MBN=∠ABC,試探究線段MN、AM、CN的數(shù)量關(guān)系為.4、如圖,四邊形ABCD是平行四邊形,∠BAC=90°.(1)尺規(guī)作圖:在BC上截取CE,使CE=CD,連接DE與AC交于點(diǎn)F,過(guò)點(diǎn)F作線段AD的垂線交AD于點(diǎn)M;(不寫作法,保留作圖痕跡)(2)在(1)的條件下,猜想線段FM和CF的數(shù)量關(guān)系,并證明你的結(jié)論.5、已知:如圖,,,AD是BC上的高線,CE是AB邊上的中線,于G.(1)若,求線段AC的長(zhǎng);(2)求證:.-參考答案-一、單選題1、B【解析】【分析】連接AC,由平行四邊形的性質(zhì)可得,再由E、F分別是BC,CD的中點(diǎn),即可得到,,,由此求解即可.【詳解】解:如圖所示,連接AC,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,AB=CD,AB∥CD,∴∵E、F分別是BC,CD的中點(diǎn),∴,,,∴,故選B.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),與三角形中線有關(guān)的面積問(wèn)題,解題的關(guān)鍵在于能夠熟練掌握平行四邊形的性質(zhì).2、B【解析】【分析】由折疊的性質(zhì)可得,∠BMN=90°,F(xiàn)B=AB=2,由此利用勾股定理求解即可.【詳解】解:∵把正方形紙片ABCD沿對(duì)邊中點(diǎn)所在的直線對(duì)折后展開(kāi),折痕為MN,AB=2,∴,∠BMN=90°,∵四邊形ABCD為正方形,AB=2,過(guò)點(diǎn)B折疊紙片,使點(diǎn)A落在MN上的點(diǎn)F處,∴FB=AB=2,則在Rt△BMF中,,故選B.【點(diǎn)睛】本題主要考查了正方形與折疊,勾股定理,解題的關(guān)鍵在于能夠熟練掌握折疊的性質(zhì).3、B【解析】【分析】由題意根據(jù)三角形的內(nèi)角和得到∠A=36°,由CD是斜邊AB上的中線,得到CD=AD,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】解:∵∠ACB=90°,∠B=54°,∴∠A=36°,∵CD是斜邊AB上的中線,∴CD=AD,∴∠ACD=∠A=36°.故選:B.【點(diǎn)睛】本題考查直角三角形的性質(zhì)與三角形的內(nèi)角和,熟練掌握直角三角形的性質(zhì)即直角三角形斜邊的中線等于斜邊的一半是解題的關(guān)鍵.4、D【解析】【分析】根據(jù)正方形的判定定理進(jìn)行判斷即可.【詳解】解:A、對(duì)角線相等的平行四邊形是矩形,不符合題意;B、對(duì)角線互相平分且垂直的四邊形是菱形,不符合題意;對(duì)角線相等且互相垂直的平行四邊形是正方形,故C選項(xiàng)不符合題意;D選項(xiàng)符合題意;故選:D.【點(diǎn)睛】本題考查了正方形的判定,熟知正方形的判定定理是解本題的關(guān)鍵.5、C【解析】【分析】過(guò)點(diǎn)F作,分別交于M、N,由F是AE中點(diǎn)得,根據(jù),計(jì)算即可得出答案.【詳解】如圖,過(guò)點(diǎn)F作,分別交于M、N,∵四邊形ABCD是矩形,∴,,∵點(diǎn)E是BC的中點(diǎn),∴,∵F是AE中點(diǎn),∴,∴.故選:C.【點(diǎn)睛】本題考查矩形的性質(zhì)與三角形的面積公式,掌握是解題的關(guān)鍵.二、填空題1、48【解析】【分析】根據(jù)題意可得:,再由平行四邊形的面積公式整理可得:,根據(jù)兩個(gè)等式可得:,代入平行四邊形面積公式即可得.【詳解】解:∵?ABCD的周長(zhǎng):,∴,∵于E,于F,,,∴,整理得:,∴,∴,∴?ABCD的面積:,故答案為:48.【點(diǎn)睛】題目主要考查平行四邊形的性質(zhì)及運(yùn)用方程思想進(jìn)行求解線段長(zhǎng),理解題意,熟練運(yùn)用平行四邊形的性質(zhì)及其面積公式是解題關(guān)鍵.2、【解析】【分析】根據(jù)菱形的性質(zhì)得到AB=1,∠ABD=30°,根據(jù)平移的性質(zhì)得到A′B′=AB=1,A′B′∥AB,推出四邊形A′B′CD是平行四邊形,得到A′D=B′C,于是得到A'C+B'C的最小值=A′C+A′D的最小值,根據(jù)平移的性質(zhì)得到點(diǎn)A′在過(guò)點(diǎn)A且平行于BD的定直線上,作點(diǎn)D關(guān)于定直線的對(duì)稱點(diǎn)E,連接CE交定直線于A′,則CE的長(zhǎng)度即為A'C+B'C的最小值,求得DE=CD,得到∠E=∠DCE=30°,于是得到結(jié)論.【詳解】解:∵在邊長(zhǎng)為1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵將△ABD沿射線BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四邊形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四邊形A′B′CD是平行四邊形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵點(diǎn)A′在過(guò)點(diǎn)A且平行于BD的定直線上,∴作點(diǎn)D關(guān)于定直線的對(duì)稱點(diǎn)E,連接CE交定直線于A′,則CE的長(zhǎng)度即為A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,如圖,過(guò)點(diǎn)D作DH⊥EC于H,∴,,∴,∴CE=2CH=,故答案為:.【點(diǎn)睛】本題考查了軸對(duì)稱-最短路線問(wèn)題,菱形的性質(zhì),平行四邊形的判定和性質(zhì),含30度角的直角三角形的性質(zhì),平移的性質(zhì),正確地理解題意是解題的關(guān)鍵.3、【解析】【分析】由折疊的性質(zhì)可得,,,,由勾股定理可得,,根據(jù)題意可得,,求得的長(zhǎng)度,即可求解.【詳解】解:由折疊的性質(zhì)可得,,,,∴為等腰直角三角形,為的中點(diǎn),∴由勾股定理可得,∴∵BG為△EBD的中線,△EBG的面積為3∴,解得∴由勾股定理得:故答案為:【點(diǎn)睛】此題考查了折疊的性質(zhì),勾股定理以及直角三角形的性質(zhì),解題的關(guān)鍵是靈活利用相關(guān)性質(zhì)進(jìn)行求解.4、(4044,0)【解析】【分析】由題意可知:正方形的邊長(zhǎng)為2,分別求得,可發(fā)現(xiàn)點(diǎn)的位置是四個(gè)一循環(huán),每旋轉(zhuǎn)一次半徑增加2,找到規(guī)律,即求得點(diǎn)P2021在x軸正半軸,進(jìn)而求得OP的長(zhǎng)度,即可求得點(diǎn)的坐標(biāo).【詳解】由題意可知:正方形的邊長(zhǎng)為2,∵A(2,0),B(0,2),C(2,2),P1(4,0),P2(0,﹣4),P3(﹣6,2),P4(2,10),P5(12,0),P6(0,﹣12)…可發(fā)現(xiàn)點(diǎn)的位置是四個(gè)一循環(huán),每旋轉(zhuǎn)一次半徑增加2,2021÷4=505…1,故點(diǎn)P2021在x軸正半軸,OP的長(zhǎng)度為2021×2+2=4044,即:P2021的坐標(biāo)是(4044,0),故答案為:(4044,0).【點(diǎn)睛】本題考查了平面直角坐標(biāo)系點(diǎn)的坐標(biāo)規(guī)律,正方形的性質(zhì),找到點(diǎn)的位置是四個(gè)一循環(huán),每旋轉(zhuǎn)一次半徑增加2的規(guī)律是解題的關(guān)鍵.5、14【解析】【分析】過(guò)點(diǎn)作的垂線,交延長(zhǎng)線于點(diǎn),先根據(jù)正方形的性質(zhì)、三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)即可得出答案.【詳解】解:如圖,過(guò)點(diǎn)作的垂線,交延長(zhǎng)線于點(diǎn),四邊形是正方形,,,,,,在和中,,,,,,又,,在和中,,,,故答案為:14.【點(diǎn)睛】本題考查了正方形的性質(zhì)、三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),通過(guò)作輔助線,構(gòu)造全等三角形是解題關(guān)鍵.三、解答題1、(1)BE=DG,BE⊥DG,理由見(jiàn)解析;(2).【分析】(1)由“SAS”證得△GCD≌△ECB;再由全等三角形的性質(zhì)和平行線的性質(zhì)可得∠EBC=∠HED=∠GDC,由余角的性質(zhì)可得答案;(2)連接BD,EG,由①知∠BHD=∠EHG=90°,根據(jù)勾股定理可得出答案.【詳解】證明:(1)BE=DG,BE⊥DG,理由如下:∵四邊形ABCD是正方形,四邊形FGCE是正方形,∴CD=CB,CG=CE,∠GCE=∠DCB=90°,∴∠GCD=∠ECB,且CD=CB,CG=CE,∴△GCD≌△ECB(SAS),∴BE=DG,∠GDC=∠EBC,∵AD∥BC,∴∠EBC=∠HED=∠GDC,∵∠GDC+∠HDE=90°,∴∠HED+∠HDE=90°,∴∠DHE=90°,∴BE⊥DG;(2)連接BD,EG,如圖所示,由(1)知∠BHD=∠EHG=90°,∴DH2+BH2=BD2=AB2+AD2=22+22=8,EH2+HG2=EG2=CG2+CE2=()2+()2=5+5=10,在Rt△BGH中,BH2+HG2=BG2,在Rt△EDH中,EH2+DH2=DE2,∴BG2+DE2=BH2+HG2+EH2+DH2=8+10=18.∴.【點(diǎn)睛】本題考查了正方形的判定與性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是靈活運(yùn)用全等三角形的性質(zhì)解決問(wèn)題,靈活運(yùn)用條件解決問(wèn)題.2、(1)8;(2)12;(3)72或216【分析】(1)根據(jù)等腰三角形的性質(zhì)以及勾股定理即可解決問(wèn)題.
(2)如圖2中,當(dāng)點(diǎn)F與D重合時(shí),連接DE.求出此時(shí)x的值即可判斷.
(3)分兩種情形分別求解即可解決問(wèn)題.【詳解】解:(1)如圖1中,∵AB=AC,BD=CD,∴AD⊥BC,在Rt△ADB中,∵AB=10,BD=CD=6,∴AD===8.(2)如圖2中,當(dāng)點(diǎn)F與D重合時(shí),連接DE.∵OF垂直平分線段BE,∴BD=DE=6,∵∠ADC=90°,AE=EC,∴AC=2DE=12,當(dāng)x=12時(shí),點(diǎn)F與點(diǎn)D重合.(3)①當(dāng)點(diǎn)F在點(diǎn)D左側(cè)時(shí),作EG⊥BC于G,連接EF,DE.∵DE=EC,EG⊥BC∴DG=GC=3,∵BD=6,DF=1,∴BF=5,∵OF垂直平分線段EB,∴EF=FB=5,在Rt△EFG中,∵EF=5,F(xiàn)G=4,∴EG==3,在Rt△DEG中,DE==3,∵AC=2DE,∴AC=6,∴x2=AC2=72.②當(dāng)點(diǎn)F在點(diǎn)D右側(cè)時(shí),作EG⊥BC于G,連接EF,DE.易知BF=EF=7,F(xiàn)G=2,EG===3,∴DE==3,∴AC=2DE=6,∴x2=AC2=216.【點(diǎn)睛】本題屬于三角形綜合題,考查了等腰三角形的性質(zhì),線段的垂直平分線的性質(zhì),勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問(wèn)題,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問(wèn)題,學(xué)會(huì)用分類討論的思想思考問(wèn)題.3、(1)MN=AM+CN;(2)MN=AM+CN,理由見(jiàn)解析;(3)MN=CN-AM,理由見(jiàn)解析【分析】(1)把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,可得到點(diǎn)M'、C、N三點(diǎn)共線,再由∠MBN=45°,可得∠M'BN=∠MBN,從而證得△NBM≌△NBM',即可求解;(2)把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,由∠A+∠C=180°,可得點(diǎn)M'、C、N三點(diǎn)共線,再由∠MBN=∠ABC,可得到∠M'BN=∠MBN,從而證得△NBM≌△NBM',即可求解;(3)在NC上截取CM'=AM,連接BM',由∠ABC+∠ADC=180°,可得∠BAM=∠C,再由AB=BC,可證得△ABM≌△CBM',從而得到AM=CM',BM=BM',∠ABM=∠CBM',進(jìn)而得到∠MAM'=∠ABC,再由∠MBN=∠ABC,可得∠MBN=∠M'BN,從而得到△NBM≌△NBM',即可求解.【詳解】解:(1)如圖,把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,在正方形ABCD中,∠A=∠BCD=∠ABC=90°,AB=BC,∴∠BCM'+∠BCD=180°,∴點(diǎn)M'、C、N三點(diǎn)共線,∵∠MBN=45°,∴∠ABM+∠CBN=45°,∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=45°,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN=M'N,∵M(jìn)'N=M'C+CN,∴MN=M'C+CN=AM+CN;(2)MN=AM+CN;理由如下:如圖,把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,∵∠A+∠C=180°,∴∠BCM'+∠BCD=180°,∴點(diǎn)M'、C、N三點(diǎn)共線,∵∠MBN=∠ABC,∴∠ABM+∠CBN=∠ABC=∠MBN,∴∠CBN+∠M'BC=∠MBN,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN=M'N,∵M(jìn)'N=M'C+CN,∴MN=M'C+CN=AM+CN;(3)MN=CN-AM,理由如下:如圖,在NC上截取CM'=AM,連接BM',∵在四邊形ABCD中,∠ABC+∠ADC=180
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)英語(yǔ)繪本教學(xué)與主教材融合的聽(tīng)說(shuō)教學(xué)研究教學(xué)研究課題報(bào)告
- 教案-2.1直播團(tuán)隊(duì)組建
- 2026年網(wǎng)絡(luò)預(yù)約出租汽車駕駛員從業(yè)資格考試題庫(kù)附完整答案(名校卷)
- 2026年心理咨詢師之心理咨詢師基礎(chǔ)知識(shí)考試題庫(kù)【b卷】
- 2025年教師轉(zhuǎn)崗考試職業(yè)能力測(cè)試題庫(kù)150道及參考答案(達(dá)標(biāo)題)
- 2026年機(jī)械員之機(jī)械員專業(yè)管理實(shí)務(wù)考試題庫(kù)200道(考點(diǎn)梳理)
- 2026年初級(jí)經(jīng)濟(jì)師考試題庫(kù)附答案【培優(yōu)b卷】
- 2026年高校教師資格證之高等教育法規(guī)考試題庫(kù)(能力提升)
- 2026年質(zhì)量員之土建質(zhì)量基礎(chǔ)知識(shí)考試題庫(kù)必考題
- 2026年投資項(xiàng)目管理師考試題庫(kù)500道及參考答案一套
- 切爾諾貝利核電站事故工程倫理分析
- 初中地理七年級(jí)上冊(cè)第七章第四節(jié)俄羅斯
- 法院起訴收款賬戶確認(rèn)書(shū)范本
- 課堂觀察與評(píng)價(jià)的基本方法課件
- 私募基金內(nèi)部人員交易管理制度模版
- 針對(duì)低層次學(xué)生的高考英語(yǔ)復(fù)習(xí)提分有效策略 高三英語(yǔ)復(fù)習(xí)備考講座
- (完整)《走遍德國(guó)》配套練習(xí)答案
- 考研準(zhǔn)考證模板word
- 周練習(xí)15- 牛津譯林版八年級(jí)英語(yǔ)上冊(cè)
- 電力電纜基礎(chǔ)知識(shí)課件
- 代理記賬申請(qǐng)表
評(píng)論
0/150
提交評(píng)論