版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
中考數(shù)學(xué)總復(fù)習(xí)《圓》試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、已知一個三角形的三邊長分別為5、7、8,則其內(nèi)切圓的半徑為()A. B. C. D.2、如圖,⊙O的半徑為5,弦AB=8,P是弦AB上的一個動點(不與A,B重合),下列符合條件的OP的值是()A.6.5 B.5.5 C.3.5 D.2.53、如圖,在中,,AB=AC=5,點在上,且,點E是AB上的動點,連結(jié),點,G分別是BC,DE的中點,連接,,當(dāng)AG=FG時,線段長為(
)A. B. C. D.44、如圖,公園內(nèi)有一個半徑為18米的圓形草坪,從地走到地有觀賞路(劣?。┖捅忝衤罚ň€段).已知、是圓上的點,為圓心,,小強從走到,走便民路比走觀賞路少走(
)米.A. B.C. D.5、已知⊙O的半徑等于3,圓心O到點P的距離為5,那么點P與⊙O的位置關(guān)系是()A.點P在⊙O內(nèi) B.點P在⊙O外 C.點P在⊙O上 D.無法確定第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,四邊形ABCD內(nèi)接于⊙O,∠A=125°,則∠C的度數(shù)為______.2、如圖,直線、相交于點,半徑為1cm的⊙的圓心在直線上,且與點的距離為8cm,如果⊙以2cm/s的速度,由向的方向運動,那么_________秒后⊙與直線相切.3、如圖,已知是的直徑,是的切線,連接交于點,連接.若,則的度數(shù)是_________.4、如圖,正方形ABCD的邊長為2a,E為BC邊的中點,的圓心分別在邊AB、CD上,這兩段圓弧在正方形內(nèi)交于點F,則E、F間的距離為.5、如圖,直線y=﹣x+6與x軸、y軸分別交于A、B兩點,點P是以C(﹣1,0)為圓心,1為半徑的圓上一點,連接PA,PB,則△PAB面積的最大值為_____.三、解答題(5小題,每小題10分,共計50分)1、正方形ABCD的四個頂點都在⊙O上,E是⊙O上的一點.(1)如圖①,若點E在上,F(xiàn)是DE上的一點,DF=BE.求證:△ADF≌△ABE;(2)在(1)的條件下,小明還發(fā)現(xiàn)線段DE、BE、AE之間滿足等量關(guān)系:DE-BE=AE.請說明理由;(3)如圖②,若點E在上.連接DE,CE,已知BC=5,BE=1,求DE及CE的長.2、已知:如圖,圓O是△ABC的外接圓,AO平分∠BAC.(1)求證:△ABC是等腰三角形;(2)當(dāng)OA=4,AB=6,求邊BC的長.3、如圖,內(nèi)接于,,,則的直徑等于多少?4、如圖,,分別切、于點、.切于點,交于點與不重合).(1)用直尺和圓規(guī)作出;(保留作圖痕跡,不寫作法)(2)若半徑為1,,求的長.5、如圖,四邊形ABCD內(nèi)接于⊙O,AB為⊙O的直徑,過點C作CE⊥AD交AD的延長線于點E,延長EC,AB交于點F,∠ECD=∠BCF.(1)求證:CE為⊙O的切線;(2)若DE=1,CD=3,求⊙O的半徑.-參考答案-一、單選題1、C【解析】【分析】先依據(jù)題意畫出圖形,如圖(見解析),過點A作于D,利用勾股定理可求出AD的長,再根據(jù)三角形內(nèi)切圓的性質(zhì)、三角形的面積公式即可得出答案.【詳解】解:如圖,,內(nèi)切圓O的半徑為,切點為,則過點A作于D,設(shè),則由勾股定理得:則,即解得,即又即解得則內(nèi)切圓的半徑為故選:C.【考點】本題考查了三角形內(nèi)切圓的性質(zhì)、勾股定理等知識點,讀懂題意,正確畫出圖形,并求出AD的長是解題關(guān)鍵.2、C【解析】【分析】連接OB,作OM⊥AB與M.根據(jù)垂徑定理和勾股定理,求出OP的取值范圍即可判斷.【詳解】解:連接OB,作OM⊥AB與M.∵OM⊥AB,∴AM=BM=AB=4,在直角△OBM中,∵OB=5,BM=4,∴.∴,故選:C.【考點】本題考查了垂徑定理、勾股定理,常把半弦長,半圓心角,圓心到弦距離轉(zhuǎn)換到同一直角三角形中,然后通過直角三角形予以求解.3、A【解析】【分析】連接DF,EF,過點F作FN⊥AC,F(xiàn)M⊥AB,結(jié)合直角三角形斜邊中線等于斜邊的一半求得點A,D,F(xiàn),E四點共圓,∠DFE=90°,然后根據(jù)勾股定理及正方形的判定和性質(zhì)求得AE的長度,從而求解.【詳解】解:連接DF,EF,過點F作FN⊥AC,F(xiàn)M⊥AB∵在中,,點G是DE的中點,∴AG=DG=EG又∵AG=FG∴點A,D,F(xiàn),E四點共圓,且DE是圓的直徑∴∠DFE=90°∵在Rt△ABC中,AB=AC=5,點是BC的中點,∴CF=BF=,F(xiàn)N=FM=又∵FN⊥AC,F(xiàn)M⊥AB,∴四邊形NAMF是正方形∴AN=AM=FN=又∵,∴∴△NFD≌△MFE∴ME=DN=AN-AD=∴AE=AM+ME=3∴在Rt△DAE中,DE=故選:A.【考點】本題考查直徑所對的圓周角是90°,四點共圓及正方形的判定和性質(zhì)和用勾股定理解直角三角形,掌握相關(guān)性質(zhì)定理正確推理計算是解題關(guān)鍵.4、D【解析】【分析】作OC⊥AB于C,如圖,根據(jù)垂徑定理得到AC=BC,再利用等腰三角形的性質(zhì)和三角形內(nèi)角和計算出∠A,從而得到OC和AC,可得AB,然后利用弧長公式計算出的長,最后求它們的差即可.【詳解】解:作OC⊥AB于C,如圖,則AC=BC,∵OA=OB,∴∠A=∠B=(180°-∠AOB)=30°,在Rt△AOC中,OC=OA=9,AC=,∴AB=2AC=,又∵=,∴走便民路比走觀賞路少走米,故選D.【考點】本題考查了垂徑定理:垂徑定理和勾股定理相結(jié)合,構(gòu)造直角三角形,可解決計算弦長、半徑、弦心距等問題.5、B【解析】【分析】根據(jù)d,r法則逐一判斷即可.【詳解】解:∵r=3,d=5,∴d>r,∴點P在⊙O外.故選:B.【考點】本題考查了點與圓的位置關(guān)系,熟練掌握d,r法則是解題的關(guān)鍵.二、填空題1、55°##55度【解析】【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠A+∠C=180°,再求出答案即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=180°-125°=55°,故答案為:55°.【考點】本題考查了圓內(nèi)接四邊形的性質(zhì)和圓周角定理,能熟記圓內(nèi)接四邊形的對角互補是解此題的關(guān)鍵.2、3或5【解析】【分析】分類討論:當(dāng)點P在當(dāng)點P在射線OA時⊙P與CD相切,過P作PE⊥CD與E,根據(jù)切線的性質(zhì)得到PE=1cm,再利用含30°的直角三角形三邊的關(guān)系得到OP=2PE=2cm,則⊙P的圓心在直線AB上向右移動了(8-2)cm后與CD相切,即可得到⊙P移動所用的時間;當(dāng)點P在射線OB時⊙P與CD相切,過P作PE⊥CD與F,同前面一樣易得到此時⊙P移動所用的時間.【詳解】當(dāng)點P在射線OA時⊙P與CD相切,如圖,過P作PE⊥CD與E,∴PE=1cm,∵∠AOC=30°,∴OP=2PE=2cm,∴⊙P的圓心在直線AB上向右移動了(8-2)cm后與CD相切,∴⊙P移動所用的時間==3(秒);當(dāng)點P在射線OB時⊙P與CD相切,如圖,過P作PE⊥CD與F,∴PF=1cm,∵∠AOC=∠DOB=30°,∴OP=2PF=2cm,∴⊙P的圓心在直線AB上向右移動了(8+2)cm后與CD相切,∴⊙P移動所用的時間==5(秒).故答案為3或5.【考點】本題考查直線與圓的位置關(guān)系:直線與有三種位置關(guān)系(相切、相交、相離).也考查了切線的性質(zhì).解題關(guān)鍵是熟練掌握以上性質(zhì).3、25【解析】【分析】先由切線的性質(zhì)可得∠OAC=90°,再根據(jù)三角形的內(nèi)角和定理可求出∠AOD=50°,最后根據(jù)“同弧所對的圓周角等于圓心角的一半”即可求出∠B的度數(shù).【詳解】解:∵是的切線,∴∠OAC=90°∵,∴∠AOD=50°,∴∠B=∠AOD=25°故答案為:25.【考點】本題考查了切線的性質(zhì)和圓周角定理,掌握圓周角定理是解題的關(guān)鍵.4、a.【解析】【分析】作DE的中垂線交CD于G,則G為的圓心,H為的圓心,連接EF,GH,交于點O,連接GF,F(xiàn)H,HE,EG,依據(jù)勾股定理可得GE=FG=a,根據(jù)四邊形EGFH是菱形,四邊形BCGH是矩形,即可得到Rt△OEG中,OE=a,即可得到EF=a.【詳解】如圖,作DE的中垂線交CD于G,則G為的圓心,同理可得,H為的圓心,連接EF,GH,交于點O,連接GF,F(xiàn)H,HE,EG,設(shè)GE=GD=x,則CG=2a-x,CE=a,Rt△CEG中,(2a-x)2+a2=x2,解得x=a,∴GE=FG=a,同理可得,EH=FH=a,∴四邊形EGFH是菱形,四邊形BCGH是矩形,∴GO=BC=a,∴Rt△OEG中,OE=,∴EF=a,故答案為a.【考點】本題主要考查了正方形的性質(zhì)以及相交兩圓的性質(zhì),相交兩圓的連心線(經(jīng)過兩個圓心的直線),垂直平分兩圓的公共弦.注意:在習(xí)題中常常通過公共弦在兩圓之間建立聯(lián)系.5、32【解析】【分析】如圖,作CH⊥AB于H交⊙O于E、F,求出A、B的坐標,根據(jù)勾股定理求出AB,再由S△ABC=AB?CH=OB?AC求出點C到AB的距離CH,即可求出圓C上點到AB的最大距離,根據(jù)面積公式求出即可.【詳解】如圖,作CH⊥AB于H交⊙O于E、F,∵直線y=﹣x+6與x軸、y軸分別交于A、B兩點,∴當(dāng)y=0時,可得0=﹣x+6,解得:x=8,∴A(8,0),當(dāng)x=0時,得y=6,∴B(0,6),∴OA=8,OB=6,∴=10,∵C(﹣1,0),∴AC=8+1=9,∴S△ABC=AB?CH=OB?AC,∴,∴CH=5.4,∴FH=CH+CF=5.4+1=6.4,即⊙C上到AB的最大距離為6.4,∴△PAB面積的最大值=×10×6.4=32,故答案為32.【考點】本題考查了三角形的面積,勾股定理、三角形等面積法求高、求圓心到直線的距離等知識,解此題的關(guān)鍵是求出圓上的點到直線AB的最大距離.三、解答題1、(1)證明見解析;(2)理由見解析;(3)DE=7,CE=【解析】【分析】(1)根據(jù)正方形的性質(zhì),得AB=AD;根據(jù)圓周角的性質(zhì),得,結(jié)合DF=BE,即可完成證明;(2)由(1)結(jié)論得AF=AE,;結(jié)合∠BAD=90°,得∠EAF=90°,從而得到△EAF是等腰直角三角形,即EF=AE;最后結(jié)合DE-DF=EF,從而得到答案;(3)連接BD,將△CBE繞點C順時針旋轉(zhuǎn)90°至△CDH;結(jié)合題意,得∠CBE+∠CDE=180°,從而得到E,D,H三點共線;根據(jù)BC=CD,得,從而推導(dǎo)得∠BEC=∠DEC=45°,即△CEH是等腰直角三角形;再根據(jù)勾股定理的性質(zhì)計算,即可得到答案.【詳解】(1)如圖,,,,在正方形ABCD中,AB=AD在△ADF和△ABE中∴△ADF≌△ABE(SAS);(2)由(1)結(jié)論得:△ADF≌△ABE∴AF=AE,∠3=∠4正方形ABCD中,∠BAD=90°∴∠BAF+∠3=90°∴∠BAF+∠4=90°∴∠EAF=90°∴△EAF是等腰直角三角形∴EF2=AE2+AF2∴EF2=2AE2∴EF=AE即DE-DF=AE∴DE-BE=AE;(3)連接BD,將△CBE繞點C順時針旋轉(zhuǎn)90°至△CDH∵四邊形BCDE內(nèi)接于圓∴∠CBE+∠CDE=180°∴E,D,H三點共線在正方形ABCD中,∠BAD=90°∴∠BED=∠BAD=90°∵BC=CD∴∴∠BEC=∠DEC=45°∴△CEH是等腰直角三角形在Rt△BCD中,由勾股定理得BD=BC=5在Rt△BDE中,由勾股定理得:DE=在Rt△CEH中,由勾股定理得:EH2=CE2+CH2∴(ED+DH)2=2CE2,即(ED+BE)2=2CE2∴64=2CE2∴CE=4.【考點】本題考查了正方形、圓、等腰三角形、勾股定理、全等三角形、旋轉(zhuǎn)的知識;解題的關(guān)鍵是熟練掌握正方形、圓周角、正多邊形與圓、等腰三角形、勾股定理、全等三角形、旋轉(zhuǎn)的性質(zhì),從而完成求解.2、(1)見解析;(2)3【解析】【分析】(1)連接OB、OC,先證明∠OBA=∠OCA=∠BAO=∠CAO,再證明△OAB≌△OAC得AB=AC,問題得證;(2)延長AO交BC于點H,先證明AH⊥BC,BH=CH,設(shè)OH=b,BH=CH=a,根據(jù)OA=4,AB=6,由勾股定理列出a、b的方程組,解得a、b,便可得BC.【詳解】解:(1)連接OB、OC,∵OA=OB=OC,OA平分∠BAC,∴∠OBA=∠OCA=∠BAO=∠CAO,在△OAB和△OAC中,,∴△OAB≌△OAC(AAS),∴AB=AC即△ABC是等腰三角形;(2)延長AO交BC于點H,∵AH平分∠BAC,AB=AC,∴AH⊥BC,BH=CH,設(shè)OH=b,BH=CH=a,∵BH2+OH2=OB2,OA=4,AB=6,則①BH2+AH2=AB2,OA=4,AB=6,則②②-①得:把代入①得:(舍)∴BC=2a=3.【考點】本題考查了三角形的全等,等腰三角形的性質(zhì),圓的基本性質(zhì),勾股定理,方程組的思想,掌握以上知識是解題的關(guān)鍵.3、12【解析】【分析】連接OB、OC,如圖,利用圓周角定理得到∠BOC=60°,則可判斷△OBC為等邊三角形,從而得到OB=6.【詳解】解:連接OB、OC,如圖,∵∠BOC=2∠BAC=2×30°=60°,而OB=OC,∴△OBC為等邊三角形,∴OB=BC=6,∴⊙O的直徑等于12.故答案為:12.【考點】本題考查了三角形的外接圓與外心:三角形外接圓的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年三明醫(yī)學(xué)科技職業(yè)學(xué)院單招職業(yè)技能測試題庫含答案詳解
- 2026年上海立信會計金融學(xué)院單招職業(yè)傾向性測試題庫及答案詳解一套
- 2026年四川藝術(shù)職業(yè)學(xué)院單招職業(yè)適應(yīng)性考試題庫含答案詳解
- 2026年蘇州高博軟件技術(shù)職業(yè)學(xué)院單招職業(yè)適應(yīng)性考試題庫及完整答案詳解1套
- 天津市五區(qū)縣重點校聯(lián)考2024-2025學(xué)年高二上學(xué)期11月期中政治試題含答案高二政治答案
- 二建建筑面試題及答案
- 2025年西北工業(yè)大學(xué)材料學(xué)院特種陶瓷及復(fù)合材料制備與評價項目組招聘備考題庫及答案詳解1套
- 2025年重慶長江軸承股份有限公司招聘13人備考題庫及一套完整答案詳解
- 隨州市中心醫(yī)院2026年招聘45人備考題庫及參考答案詳解1套
- 上海七十邁數(shù)字科技2026校園招聘備考題庫完整參考答案詳解
- GB/T 3521-2023石墨化學(xué)分析方法
- 一年級數(shù)學(xué)重疊問題練習(xí)題
- 三維動畫及特效制作智慧樹知到課后章節(jié)答案2023年下吉林電子信息職業(yè)技術(shù)學(xué)院
- 胰腺囊腫的護理查房
- 臨床醫(yī)學(xué)概論常見癥狀課件
- 事業(yè)單位專業(yè)技術(shù)人員崗位工資標準表
- 知識圖譜與自然語言處理的深度融合
- 物業(yè)管理理論實務(wù)教材
- 仁川國際機場
- 全檢員考試試題
- 光刻和刻蝕工藝
評論
0/150
提交評論