重難點解析京改版數(shù)學9年級上冊期末試卷及答案詳解【易錯題】_第1頁
重難點解析京改版數(shù)學9年級上冊期末試卷及答案詳解【易錯題】_第2頁
重難點解析京改版數(shù)學9年級上冊期末試卷及答案詳解【易錯題】_第3頁
重難點解析京改版數(shù)學9年級上冊期末試卷及答案詳解【易錯題】_第4頁
重難點解析京改版數(shù)學9年級上冊期末試卷及答案詳解【易錯題】_第5頁
已閱讀5頁,還剩32頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

京改版數(shù)學9年級上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、在中,AC=4,BC=3,則cosA的值等于(

)A. B. C.或 D.或2、二次函數(shù)的圖象如圖所示,對稱軸是直線.下列結(jié)論:①;②;③;④(為實數(shù)).其中結(jié)論正確的個數(shù)為(

)A.1個 B.2個 C.3個 D.4個3、如圖,線段,點是線段的黃金分割點(且),點是線段的黃金分割點(),點是線段的黃金分割點依此類推,則線段的長度是(

)A. B. C. D.4、如圖,ABC是等邊三角形,點D、E分別在BC、AC上,且∠ADE=60°,AB=9,BD=3,則CE的長等于()A.1 B. C. D.25、如圖,點M、N分別是正方形ABCD的邊BC、CD上的兩個動點,在運動過程中保持∠MAN=45°,連接EN、FM相交于點O,以下結(jié)論:①MN=BM+DN;②BE2+DF2=EF2;③BC2=BF?DE;④OM=OF()A.①②③ B.①②④ C.②③④ D.①②③④6、在平面直角坐標系中,將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線對應的函數(shù)表達式為(

)A. B. C. D.二、多選題(7小題,每小題2分,共計14分)1、下列各組圖形中相似的是(

)A.各有一個角是45°的兩個等腰三角形B.各有一個角是60°的兩個等腰三角形C.各有一個角是105°的兩個等腰三角形D.兩個等腰直角三角形2、利用反例可以判斷一個命題是錯誤的,下列命題錯誤的是(

)A.若,則 B.對角線相等的四邊形是矩形C.函數(shù)的圖象是中心對稱圖形 D.六邊形的外角和大于五邊形的外角和3、如果一種變換是將拋物線向右平移2個單位或向上平移1個單位,我們把這種變換稱為拋物線的簡單變換.已知拋物線經(jīng)過兩次簡單變換后的一條拋物線是y=x2+1,則原拋物線的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+174、下列四個命題中正確的命題有(

)A.兩個矩形一定相似 B.兩個菱形都有一個角是40°,那么這兩個菱形相似C.兩個正方形一定相似 D.有一個角相等的兩個等腰梯形相似5、△ABC和△A′B′C′符合下列條件,其中使△ABC和△A′B′C′相似的是(

)A.∠A=∠A′=45°,∠B=26°,∠B′=109°B.AB=1,AC=1.5,BC=2,A′B′=4,A′C′=2,B′C′=3C.∠A=∠B′,AB=2,AC=2.4,A′B′=3.6,B′C′=3D.AB=3,AC=5,BC=7,A′B′=,A′C′=,B′C′=6、如圖所示,AB為斜坡,D是斜坡AB上一點,斜坡AB的坡度為i,坡角為,于點C,下面正確的有(

)A. B.C. D.7、在Rt△ABC中,∠C=90°,當已知∠A和a時,求c,不能選擇的關(guān)系式是(

)A.c= B.c= C.c=a·tanA D.c=第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、如圖,是⊙O的內(nèi)接正三角形,點是圓心,點,分別在邊,上,若,則的度數(shù)是____度.2、二次函數(shù)y=ax2+bx+c圖象上部分點的橫坐標x與縱坐標y的對應值如表格所示,那么它的圖象與x軸的另一個交點坐標是_____.3、如圖,△ABC內(nèi)接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于點D,若☉O的半徑為2,則CD的長為_____4、如圖,直線MN∥PQ,直線AB分別與MN,PQ相交于點A,B.小宇同學利用以下步驟作圖:①以點A為圓心,適當長為半徑作弧交射線AN于點C,交線段AB于點D;②以點C為圓心,適當長為半徑畫?。蝗缓笤僖渣cD為圓心,同樣長為半徑畫弧.前后兩弧在∠NAB內(nèi)交于點E;③作射線AE,交PQ于點F;若AF=2,∠FAN=30°,則線段BF的長為_____.5、若函數(shù)圖像與x軸的兩個交點坐標為和,則__________.6、如圖是用杠桿撬石頭的示意圖,是支點,當用力壓杠桿的端時,杠桿繞點轉(zhuǎn)動,另一端向上翹起,石頭就被撬動.現(xiàn)有一塊石頭,要使其滾動,杠桿的端必須向上翹起,已知杠桿的動力臂與阻力臂之比為6:1,要使這塊石頭滾動,至少要將杠桿的端向下壓______.7、如圖,拋物線的圖象與坐標軸交于點、、,頂點為,以為直徑畫半圓交軸的正半軸于點,圓心為,是半圓上的一動點,連接,是的中點,當沿半圓從點運動至點時,點運動的路徑長是__________.四、解答題(6小題,每小題10分,共計60分)1、如圖,已知拋物線的頂點坐標為M,與x軸相交于A,B兩點(點B在點A的右側(cè)),與y軸相交于點C.(1)用配方法將拋物線的解析式化為頂點式:(),并指出頂點M的坐標;(2)在拋物線的對稱軸上找點R,使得CR+AR的值最小,并求出其最小值和點R的坐標;(3)以AB為直徑作⊙N交拋物線于點P(點P在對稱軸的左側(cè)),求證:直線MP是⊙N的切線.2、如圖,在平面直角坐標系中,直線與軸、軸分別交于、兩點,拋物線經(jīng)過、兩點;(1)求拋物線的解析式;(2)點為軸上一點,點為直線上一點,過作交軸于點,當四邊形為菱形時,請直接寫出點坐標;(3)在(2)的條件下,且點在線段上時,將拋物線向上平移個單位,平移后的拋物線與直線交于點(點在第二象限),點為軸上一點,若,且符合條件的點恰好有2個,求的取值范圍.3、(1)計算×cos45°﹣()﹣1+20180;(2)解方程組4、計算:5、新冠肺炎疫情期間,我國各地采取了多種方式進行預防.其中,某地運用無人機規(guī)勸居民回家.如圖,無人機于空中A處測得某建筑頂部B處的仰角為,測得該建筑底部C處的俯角為.若無人機的飛行高度為,求該建筑的高度(結(jié)果取整數(shù)),參考數(shù)據(jù):,,.6、如圖,在△ABC和△ADB中,∠ABC=∠ADB=90°,AC=5,AB=4,當BD的長是多少時,圖中的兩個直角三角形相似?-參考答案-一、單選題1、C【解析】【分析】分兩種情況:①AB為斜邊;②AC為斜邊,根據(jù)勾股定理求出AB長,然后根據(jù)余弦定義即可求解.【詳解】由題意,存在兩種情況:①當AB為斜邊時,∠C=90o,∵AC=4,BC=3,∴AB=,∴cosA=;②當AC為斜邊時,∠B=90o,∵AC=4,BC=3,∴AB=,∴cosA=,綜上,cosA的值等于或,故選:C.【考點】本題考查了勾股定理和銳角三角函數(shù)的概念,熟練掌握銳角三角函數(shù)的定義,并注意分類討論是解答本題的關(guān)鍵.2、C【解析】【分析】①由拋物線開口方向得到,對稱軸在軸右側(cè),得到與異號,又拋物線與軸正半軸相交,得到,可得出,選項①錯誤;②把代入中得,所以②正確;③由時對應的函數(shù)值,可得出,得到,由,,,得到,選項③正確;④由對稱軸為直線,即時,有最小值,可得結(jié)論,即可得到④正確.【詳解】解:①∵拋物線開口向上,∴,∵拋物線的對稱軸在軸右側(cè),∴,∵拋物線與軸交于負半軸,∴,∴,①錯誤;②當時,,∴,∵,∴,把代入中得,所以②正確;③當時,,∴,∴,∵,,,∴,即,所以③正確;④∵拋物線的對稱軸為直線,∴時,函數(shù)的最小值為,∴,即,所以④正確.故選C.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次項系數(shù)決定拋物線的開口方向和大?。敃r,拋物線向上開口;當時,拋物線向下開口;一次項系數(shù)和二次項系數(shù)共同決定對稱軸的位置:當與同號時,對稱軸在軸左;當與異號時,對稱軸在軸右.常數(shù)項決定拋物線與軸交點:拋物線與軸交于.拋物線與軸交點個數(shù)由判別式確定:時,拋物線與軸有2個交點;時,拋物線與軸有1個交點;時,拋物線與軸沒有交點.3、C【解析】【分析】根據(jù)把一條線段分成兩部分,使其中較長的線段為全線段與較短線段的比例中項,這樣的線段分割叫做黃金分割,它們的比值叫做黃金比進行解答即可.【詳解】解:根據(jù)黃金比的比值,,則,…依此類推,則線段,故選C.【考點】本題考查的是黃金分割的知識,理解黃金分割的概念,找出黃金分割中成比例的對應線段是解決問題的關(guān)鍵.4、D【解析】【分析】通過△ABD∽△DCE,可得,即可求解.【詳解】解:∵△ABC是等邊三角形,∴AB=BC=9,∠ABC=∠ACB=60°,∵BD=3,∴CD=6,∵∠ADC=∠ABC+∠BAD=∠ADE+∠CDE,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴,∴∴CE=2,故選:D.【考點】本題考查了三角形的相似,做題的關(guān)鍵是△ABD∽△DCE.5、A【解析】【分析】由旋轉(zhuǎn)的性質(zhì)可得AM'=AM,BM=DM',∠BAM=∠DAM',∠MAM'=90°,∠ABM=∠ADM'=90°,由“SAS”可證△AMN≌△AM′N,可得MN=NM′,可得MN=BM+DN,故①正確;由“SAS”可證△AEF≌△AED',可得EF=D'E,由勾股定理可得BE2+DF2=EF2;故②正確;通過證明△DAE∽△BFA,可得,可證BC2=DE?BF,故③正確;通過證明點A,點B,點M,點F四點共圓,∠ABM=∠AFM=90°,∠AMF=∠ABF=45°,∠BAM=∠BFM,可證MO=EO,由∠BAM≠∠DAN,可得OE≠OF,故④錯誤,即可求解.【詳解】解:將△ABM繞點A逆時針旋轉(zhuǎn)90°,得到△ADM′,將△ADF繞點A順時針旋轉(zhuǎn)90°,得到△ABD',∴AM'=AM,BM=DM',∠BAM=∠DAM',∠MAM'=90°,∠ABM=∠ADM'=90°,∴∠ADM'+∠ADC=180°,∴點M'在直線CD上,∵∠MAN=45°,∴∠DAN+∠MAB=45°=∠DAN+∠DAM'=∠M'AN,∴∠M′AN=∠MAN=45°,又∵AN=AN,AM=AM',∴△AMN≌△AM′N(SAS),∴MN=NM′,∴M′N=M′D+DN=BM+DN,∴MN=BM+DN;故①正確;∵將△ADF繞點A順時針旋轉(zhuǎn)90°,得到△ABD',∴AF=AD',DF=D'B,∠ADF=∠ABD'=45°,∠DAF=∠BAD',∴∠D'BE=90°,∵∠MAN=45°,∴∠BAE+∠DAF=45°=∠BAD'+∠BAE=∠D'AE,∴∠D'AE=∠EAF=45°,又∵AE=AE,AF=AD',∴△AEF≌△AED'(SAS),∴EF=D'E,∵D'E2=BE2+D'B2,∴BE2+DF2=EF2;故②正確;∵∠BAF=∠BAE+∠EAF=∠BAE+45°,∠AEF=∠BAE+∠ABE=45°+∠BAE,∴∠BAF=∠AEF,又∵∠ABF=∠ADE=45°,∴△DAE∽△BFA,∴,又∵AB=AD=BC,∴BC2=DE?BF,故③正確;∵∠FBM=∠FAM=45°,∴點A,點B,點M,點F四點共圓,∴∠ABM=∠AFM=90°,∠AMF=∠ABF=45°,∠BAM=∠BFM,同理可求∠AEN=90°,∠DAN=∠DEN,∴∠EOM=45°=∠EMO,∴EO=EM,∴MO=EO,∵∠BAM≠∠DAN,∴∠BFM≠∠DEN,∴EO≠FO,∴OM≠FO,故④錯誤,故選:A.【考點】本題考查了全等三角形的判定和性質(zhì),正方形的性質(zhì),相似三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì)等知識,添加恰當輔助線構(gòu)造全等三角形是解題的關(guān)鍵.6、B【解析】【分析】先求出平移后拋物線的頂點坐標,進而即可得到答案.【詳解】解:∵的頂點坐標為(0,0)∴將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線的頂點坐標為(-2,1),∴所得拋物線對應的函數(shù)表達式為,故選B【考點】本題主要考查二次函數(shù)的平移規(guī)律,找出平移后二次函數(shù)圖像的頂點坐標或掌握“左加右減,上加下減”,是解題的關(guān)鍵.二、多選題1、BCD【解析】【分析】根據(jù)相似三角形的判定方法和等腰三角形的性質(zhì)進行解答即可得.【詳解】解:A、沒有指明這個的角是頂角還是底角,則無法判定其相似,選項說法錯誤,不符合題意;B、有一個角為的等腰三角形是等邊三角形,根據(jù)三組對應邊的比相等的兩個三角形相似判定這兩個三角形相似,選項說法正確,符合題意;C、已知一個角為的等腰三角形,我們可以判定其為頂角,頂角相等且兩條腰對應成比例則這兩個三角形相似,選項說法正確,符合題意;D、兩個等腰直角三角形,可以根據(jù)兩組對應邊的比相等且相應的夾角相等的兩個三角形相似來判定這兩個三角形相似,選項說法正確,符合題意;故選BCD.【考點】本題考查了相似三角形,解題的根據(jù)是掌握相似三角形的判定和等腰三角形的性質(zhì).2、ABD【解析】【分析】根據(jù)有理數(shù)的乘法、矩形的判定定理、反比例函數(shù)的性質(zhì)、多邊形的外角性質(zhì)逐一判斷即可.【詳解】解:A、當b=0,a≠0時,則,該選項符合題意;B、如圖:四邊形ABCD的對角線AC=BD,但四邊形ABCD不是矩形,該選項符合題意;C、函數(shù)的圖象是中心對稱圖形,該選項不符合題意;D、多邊形的外角和都相等,等于360°,該選項符合題意;故選:ABD.【考點】本題考查了命題與定理的知識,解題的關(guān)鍵是了解判斷一個命題是假命題的時候可以舉出反例.3、ACD【解析】【分析】根據(jù)圖象左移加,右移減,圖象上移加,下移減,可得答案.【詳解】解:A、y=x2?1,先向上平移1個單位得到y(tǒng)=x2,再向上平移1個單位可以得到y(tǒng)=x2+1,故A符合題意;B、y=x2+6x+5=(x+3)2?4,右移3個單位,再上移5得到y(tǒng)=x2+1,故B不符合題意;C、y=x2+4x+4=(x+2)2,先向右平移2個單位得到y(tǒng)=(x+2?2)2=x2,再向上平移1個單位得到y(tǒng)=x2+1,故C符合題意;D、y=x2+8x+17=(x+4)2+1,先向右平移2個單位得到y(tǒng)=(x+4?2)2+1,再向右平移1個單位得到y(tǒng)=(x+4?2-2)2+1=x2+1,故D符合題意.故選:ACD.【考點】本題考查了二次函數(shù)圖象與幾何變換,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式,注意由目標函數(shù)圖象到原函數(shù)圖象方向正好相反.4、BC【解析】【分析】根據(jù)兩個圖形相似的性質(zhì)及判定方法,對應邊的比相等,對應角相等,兩個條件同時滿足來判斷正誤.【詳解】解:A兩個矩形對應角都是直角相等,對應邊不一定成比例,所以不一定相似,故本小題錯誤;B兩個菱形有一個角相等,則其它對應角也相等,對應邊成比例,所以一定相似,故本小題正確;C兩個正方形一定相似,正確;D有一個角相等的兩個等腰梯形,對應角一定相等,但對應邊的比不一定相等,故本小題錯誤.故選:BC.【考點】本題考查的是相似多邊形的判定及菱形,矩形,正方形,等腰梯形的性質(zhì)及其定義.5、ABC【解析】【分析】根據(jù)三角形相似的判定定理逐項排查即可.【詳解】解:A:∵∠A=∠A′=45°,∠B=26°,∠B′=109°,∴∠C=109°,∠C′=26°,∴∠B=∠C,∴△ABC∽△A′C′B′,B:∵AB=1,AC=1.5,BC=2,A′B′=4,A′C′=2,B′C′=3,∴,∴△ABC∽△C′A′B′;C:∵∠A=∠B′,AB=2,AC=2.4,A′B′=3.6,B′C′=3,∴AB:B′C′=AC:A′B′=2:3,∴△ABC∽△B′C′A′;D:∵AB=3,AC=5,BC=7,A′B′=,A′C′=

B′C′=,∴,∴不相似.故選ABC.【考點】本題主要考查了相似三角形的判定,相似三角形的判定方法主要有:①有兩個對應角相等的三角形相似;②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.6、BCD【解析】【分析】根據(jù)坡度的定義解答即可.【詳解】交于點,交于點,,,,,,∴BCD正確.故選:BCD.【考點】本題考查了解直角三角形的應用-坡度坡角問題,熟記坡度的定義是解題的關(guān)鍵.7、BCD【解析】【分析】在Rt△ABC中,∠C=90°,sinA=變形可判斷A,在Rt△ABC中,∠C=90°,由cosA=和tanA=,可得可判斷B、D,在Rt△ABC中,∠C=90°,由tanA=,可得,由勾股定理c=,可判斷C.【詳解】解:在Rt△ABC中,∠C=90°,∵sinA=,∴c=,故選項A正確;在Rt△ABC中,∠C=90°,∵cosA=∴∵tanA=∴∴故選項B不正確;在Rt△ABC中,∠C=90°,∵tanA=∴∴c=故選項C不正確在Rt△ABC中,∠C=90°,∵tanA=∴∵cosA=∴∴故選項D不正確;不能選擇的關(guān)系式是BCD.故選擇BCD.【考點】本題主要考查解三角形,勾股定理,解題的關(guān)鍵是熟練運用三角函數(shù)的定義求解.三、填空題1、120【解析】【分析】本題可通過構(gòu)造輔助線,利用垂徑定理證明角等,繼而利用SAS定理證明三角形全等,最后根據(jù)角的互換結(jié)合同弧所對的圓周角等于圓心角的一半求解本題.【詳解】連接OA,OB,作OH⊥AC,OM⊥AB,如下圖所示:因為等邊三角形ABC,OH⊥AC,OM⊥AB,由垂徑定理得:AH=AM,又因為OA=OA,故△OAH△OAM(HL).∴∠OAH=∠OAM.又∵OA=OB,AD=EB,∴∠OAB=∠OBA=∠OAD,∴△ODA△OEB(SAS),∴∠DOA=∠EOB,∴∠DOE=∠DOA+∠AOE=∠AOE+∠EOB=∠AOB.又∵∠C=60°以及同弧,∴∠AOB=∠DOE=120°.故本題答案為:120.【考點】本題考查圓與等邊三角形的綜合,本題目需要根據(jù)等角的互換將所求問題進行轉(zhuǎn)化,構(gòu)造輔助線是本題難點,全等以及垂徑定理的應用在圓綜合題目極為常見,圓心角、弧、圓周角的關(guān)系需熟練掌握.2、(1,0)【解析】【分析】根據(jù)表中數(shù)據(jù)得到點(-2,-3)和(0,-3)對稱點,從而得到拋物線的對稱軸為直線x=-1,再利用表中數(shù)據(jù)得到拋物線與x軸的一個交點坐標為(-3,0),然后根據(jù)拋物線的對稱性就看得到拋物線與x軸的一個交點坐標.【詳解】∵x=-2,y=-3;x=0時,y=-3,∴拋物線的對稱軸為直線x=-1,∵拋物線與x軸的一個交點坐標為(-3,0),∴拋物線與x軸的一個交點坐標為(1,0).故答案為(1,0).【考點】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉(zhuǎn)化解關(guān)于x的一元二次方程即可求得交點橫坐標.也考查了二次函數(shù)的性質(zhì).3、【解析】【分析】連接OA,OC,根據(jù)∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函數(shù)即可求得CD的長.【詳解】解:連接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案為.【考點】本題考查了圓周角定理以及銳角三角函數(shù),根據(jù)題意作出常用輔助線是解題關(guān)鍵.4、2【解析】【分析】過B作BG⊥AF于G,依據(jù)AB=BF,運用等腰三角形的性質(zhì),即可得出GF的長,進而得到BF的長.【詳解】解:如圖,過B作BG⊥AF于G,∵MN∥PQ,∴∠FAN=∠3=30°,由題意得:AF平分∠NAB,∴∠1=∠2=30°,∴∠1=∠3=30°,∴AB=BF,又∵BG⊥AF,∴AG=GF=AF=,∴Rt△BFG中,BF=,故答案為:2.【考點】本題考查了平行線的性質(zhì)、角平分線的基本作圖、直角三角形30度角的性質(zhì),熟練掌握平行線和角平分線的基本作圖是關(guān)鍵.5、-2【解析】【分析】根據(jù)二次函數(shù)圖象對稱軸所在的直線與x軸的交點的坐標,即為它的圖象與x軸兩交點之間線段中點的橫坐標,即可求得.【詳解】解:函數(shù)圖像與x軸的兩個交點坐標為和由對稱軸所在的直線為:解得故答案為:-2.【考點】本題考查了二次函數(shù)的性質(zhì)及中點坐標的求法,熟練掌握和運用二次函數(shù)的性質(zhì)及中點坐標的求法是解決本題的關(guān)鍵.6、60【解析】【分析】首先根據(jù)題意構(gòu)造出相似三角形,然后根據(jù)相似三角形的對應邊成比例求得端點A向下壓的長度.【詳解】解:如圖;AM、BN都與水平線垂直,即AM∥BN;易知:△ACM∽△BCN;∴,∵AC與BC之比為6:1,∴,即AM=6BN;∴當BN≥10cm時,AM≥60cm;故要使這塊石頭滾動,至少要將杠桿的端點A向下壓60cm.故答案為:60.【考點】本題考查相似三角形的判定與性質(zhì)的實際應用,正確的構(gòu)造相似三角形是解題的關(guān)鍵.7、【解析】【分析】先求出A、B、E的坐標,然后求出半圓的直徑為4,由于E為定點,P是半圓AB上的動點,N為EP的中點,所以N的運動路經(jīng)為直徑為2的半圓,計算即可.【詳解】解:,∴點E的坐標為(1,-2),令y=0,則,解得,,,∴A(-1,0),B(3,0),∴AB=4,由于E為定點,P是半圓AB上的動點,N為EP的中點,所以N的運動路經(jīng)為直徑為2的半圓,如圖,∴點運動的路徑長是.【考點】本題屬于二次函數(shù)和圓的綜合問題,考查了運動路徑的問題,熟練掌握二次函數(shù)和圓的基礎(chǔ)是解題的關(guān)鍵.四、解答題1、(1),M(,);(2),(,);(3)證明見試題解析.【解析】【詳解】試題分析:(1)利用配方法把一般式轉(zhuǎn)化為頂點式,然后根據(jù)二次函數(shù)的性質(zhì)求出拋物線的頂點坐標;(2)連接BC,則BC與對稱軸的交點為R,此時CR+AR的值最??;先求出點A、B、C的坐標,再利用待定系數(shù)法求出直線BC的解析式,進而求出其最小值和點R的坐標;(3)設(shè)點P坐標為(x,).根據(jù)NPAB=,列出方程,解方程得到點P坐標,再計算得出,由勾股定理的逆定理得出∠MPN=90°,然后利用切線的判定定理即可證明直線MP是⊙N的切線.試題解析:(1)∵=,∴拋物線的解析式化為頂點式為:,頂點M的坐標是(,);(2)∵,∴當y=0時,,解得x=1或6,∴A(1,0),B(6,0),∵x=0時,y=﹣3,∴C(0,﹣3).連接BC,則BC與對稱軸x=的交點為R,連接AR,則CR+AR=CR+BR=BC,根據(jù)兩點之間線段最短可知此時CR+AR的值最小,最小值為BC==.設(shè)直線BC的解析式為,∵B(6,0),C(0,﹣3),∴,解得:,∴直線BC的解析式為:,令x=,得y==,∴R點坐標為(,);(3)設(shè)點P坐標為(x,).∵A(1,0),B(6,0),∴N(,0),∴以AB為直徑的⊙N的半徑為AB=,∴NP=,即,移項得,,得:,整理得:,解得(與A重合,舍去),,(在對稱軸的右側(cè),舍去),(與B重合,舍去),∴點P坐標為(2,2).∵M(,),N(,0),∴==,==,==,∴,∴∠MPN=90°,∵點P在⊙N上,∴直線MP是⊙N的切線.考點:1.二次函數(shù)綜合題;2.最值問題;3.切線的判定;4.壓軸題.2、(1);(2);;(3)【解析】【分析】(1)由題意易得,,然后代入拋物線解析式進行求解即可;(2)由題意可畫出圖象,設(shè)點,然后求出直線AB的解析式為,則可設(shè)點,點,進而根據(jù)中點坐標公式及兩點距離公式可進行求解;(3)過作軸交于,由(2)可得:,,則有,設(shè),,進而可得,則,然后可得,則有,最后根據(jù)一元二次方程根的判別式可進行求解.【詳解】解:(1)∵直線與軸、軸分別交于、兩點,∴,,∵拋物線經(jīng)過、兩點,∴,解得:,∴拋物線的解析式為;(2)由(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論