重難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》達(dá)標(biāo)測(cè)試試卷(含答案詳解版)_第1頁(yè)
重難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》達(dá)標(biāo)測(cè)試試卷(含答案詳解版)_第2頁(yè)
重難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》達(dá)標(biāo)測(cè)試試卷(含答案詳解版)_第3頁(yè)
重難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》達(dá)標(biāo)測(cè)試試卷(含答案詳解版)_第4頁(yè)
重難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》達(dá)標(biāo)測(cè)試試卷(含答案詳解版)_第5頁(yè)
已閱讀5頁(yè),還剩33頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》達(dá)標(biāo)測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,在△ABC中,AC=BC=8,∠BCA=60°,直線AD⊥BC于點(diǎn)D,E是AD上的一個(gè)動(dòng)點(diǎn),連接EC,將線段EC繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)60°得到FC,連接DF,則在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,DF的最小值是()A.1 B.1.5 C.2 D.42、下列條件中,能判定四邊形是正方形的是()A.對(duì)角線相等的平行四邊形 B.對(duì)角線互相平分且垂直的四邊形C.對(duì)角線互相垂直且相等的四邊形 D.對(duì)角線相等且互相垂直的平行四邊形3、如圖,在矩形ABCD中,點(diǎn)E是BC的中點(diǎn),連接AE,點(diǎn)F是AE的中點(diǎn),連接DF,若AB=9,AD,則四邊形CDFE的面積是()A. B. C. D.544、如圖,在菱形中,P是對(duì)角線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作于點(diǎn)E.于點(diǎn)F.若菱形的周長(zhǎng)為24,面積為24,則的值為()A.4 B. C.6 D.5、如圖,正方形的面積為256,點(diǎn)F在上,點(diǎn)E在的延長(zhǎng)線上,的面積為200,則的長(zhǎng)為()A.10 B.11 C.12 D.15第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在平行四邊形ABCD中,,E、F分別在CD和BC的延長(zhǎng)線上,,,則______.2、如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(8,0),(8,6),(0,6),點(diǎn)D為線段BC上一動(dòng)點(diǎn),將△OCD沿OD翻折,使點(diǎn)C落到點(diǎn)E處.當(dāng)B,E兩點(diǎn)之間距離最短時(shí),點(diǎn)D的坐標(biāo)為_(kāi)___.3、在直角墻角FOE中有張硬紙片正方形ABCD靠墻邊滑動(dòng),如圖所示,AD=2,A點(diǎn)沿墻往下滑動(dòng)到O點(diǎn)的過(guò)程中,正方形的中心點(diǎn)M到O的最小值是______.4、如圖,在邊長(zhǎng)為1的菱形ABCD中,∠ABC=60°,將△ABD沿射線BD的方向平移得到△A'B'D',分別連接A'C,A'D,B'C,則A'C+B'C的最小值為_(kāi)____.5、如圖,將n個(gè)邊長(zhǎng)都為1的正方形按如圖所示擺放,點(diǎn)A1,A2,…,An分別是正方形的中心,則n個(gè)正方形重疊形成的重疊部分的面積和為_(kāi)____.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖1,在平面直角坐標(biāo)系中,且;(1)試說(shuō)明是等腰三角形;(2)已知.寫出各點(diǎn)的坐標(biāo):A(,),B(,),C(,).(3)在(2)的條件下,若一動(dòng)點(diǎn)M從點(diǎn)B出發(fā)沿線段BA向點(diǎn)A運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā)以相同速度沿線段AC向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)都停止.①若的一條邊與BC平行,求此時(shí)點(diǎn)M的坐標(biāo);②若點(diǎn)E是邊AC的中點(diǎn),在點(diǎn)M運(yùn)動(dòng)的過(guò)程中,能否成為等腰三角形?若能,求出此時(shí)點(diǎn)M的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.2、綜合與實(shí)踐(1)如圖1,在正方形ABCD中,點(diǎn)M、N分別在AD、CD上,若∠MBN=45°,則MN,AM,CN的數(shù)量關(guān)系為.(2)如圖2,在四邊形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,點(diǎn)M、N分別在AD、CD上,若∠MBN=∠ABC,試探索線段MN、AM、CN有怎樣的數(shù)量關(guān)系?請(qǐng)寫出猜想,并給予證明.(3)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點(diǎn)M、N分別在DA、CD的延長(zhǎng)線上,若∠MBN=∠ABC,試探究線段MN、AM、CN的數(shù)量關(guān)系為.3、已知,在中,,,點(diǎn)D為BC的中點(diǎn).(1)觀察猜想如圖①,若點(diǎn)E、F分別是AB、AC的中點(diǎn),則線段DE與DF的數(shù)量關(guān)系是______________;線段DE與DF的位置關(guān)系是______________.(2)類比探究如圖②,若點(diǎn)E、F分別是AB、AC上的點(diǎn),且,上述結(jié)論是否仍然成立,若成立,請(qǐng)證明:若不成立,請(qǐng)說(shuō)明理由;(3)解決問(wèn)題如圖③,若點(diǎn)E、F分別為AB、CA延長(zhǎng)線的點(diǎn),且,請(qǐng)直接寫出的面積.

4、在菱形ABCD中,∠ABC=60°,P是直線BD上一動(dòng)點(diǎn),以AP為邊向右側(cè)作等邊APE(A,P,E按逆時(shí)針排列),點(diǎn)E的位置隨點(diǎn)P的位置變化而變化.(1)如圖1,當(dāng)點(diǎn)P在線段BD上,且點(diǎn)E在菱形ABCD內(nèi)部或邊上時(shí),連接CE,則BP與CE的數(shù)量關(guān)系是,BC與CE的位置關(guān)系是;(2)如圖2,當(dāng)點(diǎn)P在線段BD上,且點(diǎn)E在菱形ABCD外部時(shí),(1)中的結(jié)論是否還成立?若成立,請(qǐng)予以證明;若不成立,請(qǐng)說(shuō)明理由;(3)當(dāng)點(diǎn)P在直線BD上時(shí),其他條件不變,連接BE.若AB=2,BE=2,請(qǐng)直接寫出APE的面積.5、△ABC和△GEF都是等邊三角形.問(wèn)題背景:如圖1,點(diǎn)E與點(diǎn)C重合且B、C、G三點(diǎn)共線.此時(shí)△BFC可以看作是△AGC經(jīng)過(guò)平移、軸對(duì)稱或旋轉(zhuǎn)得到.請(qǐng)直接寫出得到△BFC的過(guò)程.遷移應(yīng)用:如圖2,點(diǎn)E為AC邊上一點(diǎn)(不與點(diǎn)A,C重合),點(diǎn)F為△ABC中線CD上一點(diǎn),延長(zhǎng)GF交BC于點(diǎn)H,求證:.聯(lián)系拓展:如圖3,AB=12,點(diǎn)D,E分別為AB、AC的中點(diǎn),M為線段BD上靠近點(diǎn)B的三等分點(diǎn),點(diǎn)F在射線DC上運(yùn)動(dòng)(E、F、G三點(diǎn)按順時(shí)針排列).當(dāng)最小時(shí),則△MDG的面積為_(kāi)______.-參考答案-一、單選題1、C【解析】【分析】取線段AC的中點(diǎn)G,連接EG,根據(jù)等邊三角形的性質(zhì)以及角的計(jì)算即可得出CD=CG以及∠FCD=∠ECG,由旋轉(zhuǎn)的性質(zhì)可得出EC=FC,由此即可利用全等三角形的判定定理SAS證出△FCD≌△ECG,進(jìn)而即可得出DF=GE,再根據(jù)點(diǎn)G為AC的中點(diǎn),即可得出EG的最小值,此題得解.【詳解】解:取線段AC的中點(diǎn)G,連接EG,如圖所示.∵AC=BC=8,∠BCA=60°,∴△ABC為等邊三角形,且AD為△ABC的對(duì)稱軸,∴CD=CG=AB=4,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG,在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.當(dāng)EG∥BC時(shí),EG最小,∵點(diǎn)G為AC的中點(diǎn),∴此時(shí)EG=DF=CD=BC=2.故選:C.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)以及全等三角形的判定與性質(zhì),三角形中位線的性質(zhì),解題的關(guān)鍵是通過(guò)全等三角形的性質(zhì)找出DF=GE,本題屬于中檔題,難度不大,解決該題型題目時(shí),根據(jù)全等三角形的性質(zhì)找出相等的邊是關(guān)鍵.2、D【解析】【分析】根據(jù)正方形的判定定理進(jìn)行判斷即可.【詳解】解:A、對(duì)角線相等的平行四邊形是矩形,不符合題意;B、對(duì)角線互相平分且垂直的四邊形是菱形,不符合題意;對(duì)角線相等且互相垂直的平行四邊形是正方形,故C選項(xiàng)不符合題意;D選項(xiàng)符合題意;故選:D.【點(diǎn)睛】本題考查了正方形的判定,熟知正方形的判定定理是解本題的關(guān)鍵.3、C【解析】【分析】過(guò)點(diǎn)F作,分別交于M、N,由F是AE中點(diǎn)得,根據(jù),計(jì)算即可得出答案.【詳解】如圖,過(guò)點(diǎn)F作,分別交于M、N,∵四邊形ABCD是矩形,∴,,∵點(diǎn)E是BC的中點(diǎn),∴,∵F是AE中點(diǎn),∴,∴.故選:C.【點(diǎn)睛】本題考查矩形的性質(zhì)與三角形的面積公式,掌握是解題的關(guān)鍵.4、A【解析】【分析】連接BP,通過(guò)菱形的周長(zhǎng)為24,求出邊長(zhǎng),菱形面積為24,求出的面積,然后利用面積法,,即可求出的值.【詳解】解:如圖所示,連接BP,∵菱形ABCD的周長(zhǎng)為24,∴,又∵菱形ABCD的面積為24,∴,∴,∴,∵,∴,∵,∴,故選:A.【點(diǎn)睛】本題主要考查菱形的性質(zhì),解題關(guān)鍵在于添加輔助線,通過(guò)面積法得出等量關(guān)系.5、C【解析】【分析】先證明Rt△CDF≌Rt△CBE,故CE=CF,根據(jù)△CEF的面積計(jì)算CE,根據(jù)正方形ABCD的面積計(jì)算BC,根據(jù)勾股定理計(jì)算BE.【詳解】解:∵∠ECF=90°,∠DCB=90°,∴∠BCE=∠DCF,∴,∴△CDF≌△CBE,故CF=CE.因?yàn)镽t△CEF的面積是200,即?CE?CF=200,故CE=20,正方形ABCD的面積=BC2=256,得BC=16.根據(jù)勾股定理得:BE==12.故選:C.【點(diǎn)睛】本題考查了正方形,等腰直角三角形面積的計(jì)算,考查了直角三角形中勾股定理的運(yùn)用,本題中求證CF=CE是解題的關(guān)鍵.二、填空題1、8【解析】【分析】證明四邊形ABDE是平行四邊形,得到DE=CD=,,過(guò)點(diǎn)E作EH⊥BF于H,證得CH=EH,利用勾股定理求出EH,再根據(jù)30度角的性質(zhì)求出EF.【詳解】解:∵四邊形ABCD是平行四邊形,∴,AB=CD,∵,∴四邊形ABDE是平行四邊形,∴DE=CD=,,過(guò)點(diǎn)E作EH⊥BF于H,∵,∴∠ECH=,∴CH=EH,∵,,∴CH=EH=4,∵∠EHF=90°,,∴EF=2EH=8,故答案為:8.【點(diǎn)睛】此題考查了平行四邊形的判定及性質(zhì),勾股定理,直角三角形30度角的性質(zhì),熟記各知識(shí)點(diǎn)并應(yīng)用解決問(wèn)題是解題的關(guān)鍵.2、(3,6)【解析】【分析】連接OB,證得當(dāng)O、E、B在同一直線上時(shí),BE取得最小值,再利用勾股定理構(gòu)造方程求解即可.【詳解】解:連接OB,∵點(diǎn)A,B,C的坐標(biāo)分別為(8,0),(8,6),(0,6),∴OA=8,AB=6,BC=8,OC=6,∵∠COA=90°,∴四邊形OABC為矩形,OB=,由折疊的性質(zhì)知:OC=OE=6,CD=DE,∴BEOB-OE=10-6=4,∴當(dāng)O、E、B在同一直線上時(shí),BE取得最小值,此時(shí)BE=4,∠DEB=90°,設(shè)CD=DE=x,則BD=8-x,∵,解得:x=3,即CD=3,∴點(diǎn)D的坐標(biāo)為(3,6).【點(diǎn)睛】本題考查了矩形的判定和性質(zhì),坐標(biāo)與圖形,折疊的性質(zhì),勾股定理,解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問(wèn)題,3、2【解析】【分析】取的中點(diǎn)為,連接,根據(jù)直角三角形的性質(zhì)求出OG和MG的長(zhǎng),然后根據(jù)兩點(diǎn)之間線段最短即可求解.【詳解】解:取的中點(diǎn)為,連接,為正方形,,,為中點(diǎn),,又為直角三角形,,的軌跡是以為圓心的圓弧,最小值為當(dāng)三點(diǎn)共線時(shí),即,故答案為:2.【點(diǎn)睛】本題考查了正方形的性質(zhì),直角三角形斜邊的中線等于斜邊的一半,以及兩點(diǎn)之間線段最短等知識(shí),正確作出輔助線是解答本題的關(guān)鍵.4、【解析】【分析】根據(jù)菱形的性質(zhì)得到AB=1,∠ABD=30°,根據(jù)平移的性質(zhì)得到A′B′=AB=1,A′B′∥AB,推出四邊形A′B′CD是平行四邊形,得到A′D=B′C,于是得到A'C+B'C的最小值=A′C+A′D的最小值,根據(jù)平移的性質(zhì)得到點(diǎn)A′在過(guò)點(diǎn)A且平行于BD的定直線上,作點(diǎn)D關(guān)于定直線的對(duì)稱點(diǎn)E,連接CE交定直線于A′,則CE的長(zhǎng)度即為A'C+B'C的最小值,求得DE=CD,得到∠E=∠DCE=30°,于是得到結(jié)論.【詳解】解:∵在邊長(zhǎng)為1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵將△ABD沿射線BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四邊形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四邊形A′B′CD是平行四邊形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵點(diǎn)A′在過(guò)點(diǎn)A且平行于BD的定直線上,∴作點(diǎn)D關(guān)于定直線的對(duì)稱點(diǎn)E,連接CE交定直線于A′,則CE的長(zhǎng)度即為A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,如圖,過(guò)點(diǎn)D作DH⊥EC于H,∴,,∴,∴CE=2CH=,故答案為:.【點(diǎn)睛】本題考查了軸對(duì)稱-最短路線問(wèn)題,菱形的性質(zhì),平行四邊形的判定和性質(zhì),含30度角的直角三角形的性質(zhì),平移的性質(zhì),正確地理解題意是解題的關(guān)鍵.5、【解析】【分析】根據(jù)題意可得,陰影部分的面積是正方形的面積的,已知兩個(gè)正方形可得到一個(gè)陰影部分,則n個(gè)這樣的正方形重疊部分即為(n-1)個(gè)陰影部分的和.【詳解】解:由題意可得一個(gè)陰影部分面積等于正方形面積的,即是,n個(gè)這樣的正方形重疊部分(陰影部分)的面積和為:.故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì),解題的關(guān)鍵是得到n個(gè)這樣的正方形重疊部分(陰影部分)的面積和的計(jì)算方法,難點(diǎn)是求得一個(gè)陰影部分的面積.三、解答題1、(1)見(jiàn)解析;(2)12,0;-8,0;0,16;(3)①當(dāng)M的坐標(biāo)為(2,0)或(4,0)時(shí),△OMN的一條邊與BC平行;②當(dāng)M的坐標(biāo)為(0,10)或(12,0)或(,0)時(shí),,△MOE是等腰三角形.

【分析】(1)設(shè),,,則,由勾股定理求出,即可得出結(jié)論;(2)由的面積求出m的值,從而得到、、的長(zhǎng),即可得到A、B、C的坐標(biāo);(3)①分當(dāng)時(shí),;當(dāng)時(shí),;得出方程,解方程即可;②由直角三角形的性質(zhì)得出,根據(jù)題意得出為等腰三角形,有3種可能:如果;如果;如果;分別得出方程,解方程即可.【詳解】解:(1)證明:設(shè),,,則,在中,,,∴是等腰三角形;(2)∵,,∴,∴,,,.∴A點(diǎn)坐標(biāo)為(12,0),B點(diǎn)坐標(biāo)為(-8,0),C點(diǎn)坐標(biāo)為(0,16),故答案為:12,0;-8,0;0,16;(3)①如圖3-1所示,當(dāng)MN∥BC時(shí),∵AB=AC,∴∠ABC=∠ACB,∵M(jìn)N∥BC,∴∠AMN=∠ABC,∠ANM=∠ACB,∴∠AMN=∠ANM,∴AM=AN,∴AM=BM,∴M為AB的中點(diǎn),∵,∴,∴,∴點(diǎn)M的坐標(biāo)為(2,0);如圖3-2所示,當(dāng)ON∥BC時(shí),同理可得,∴,∴M點(diǎn)的坐標(biāo)為(4,0);∴綜上所述,當(dāng)M的坐標(biāo)為(2,0)或(4,0)時(shí),△OMN的一條邊與BC平行;

②如圖3-3所示,當(dāng)OM=OE時(shí),∵E是AC的中點(diǎn),∠AOC=90°,,∴,∴此時(shí)M的坐標(biāo)為(0,10);如圖3-4所示,當(dāng)時(shí),∴此時(shí)M點(diǎn)與A點(diǎn)重合,∴M點(diǎn)的坐標(biāo)為(12,0);如圖3-5所示,當(dāng)OM=ME時(shí),過(guò)點(diǎn)E作EF⊥x軸于F,∵OE=AE,EF⊥OA,∴,∴,設(shè),則,∵,∴,解得,∴M點(diǎn)的坐標(biāo)為(,0);綜上所述,當(dāng)M的坐標(biāo)為(0,10)或(12,0)或(,0)時(shí),,△MOE是等腰三角形.【點(diǎn)睛】本題主要考查了坐標(biāo)與圖形,勾股定理,等腰三角形的性質(zhì)與判定,直角三角形斜邊上的直線,三角形面積等等,解題的關(guān)鍵在于能夠利用數(shù)形結(jié)合和分類討論的思想求解.2、(1)MN=AM+CN;(2)MN=AM+CN,理由見(jiàn)解析;(3)MN=CN-AM,理由見(jiàn)解析【分析】(1)把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,可得到點(diǎn)M'、C、N三點(diǎn)共線,再由∠MBN=45°,可得∠M'BN=∠MBN,從而證得△NBM≌△NBM',即可求解;(2)把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,由∠A+∠C=180°,可得點(diǎn)M'、C、N三點(diǎn)共線,再由∠MBN=∠ABC,可得到∠M'BN=∠MBN,從而證得△NBM≌△NBM',即可求解;(3)在NC上截取CM'=AM,連接BM',由∠ABC+∠ADC=180°,可得∠BAM=∠C,再由AB=BC,可證得△ABM≌△CBM',從而得到AM=CM',BM=BM',∠ABM=∠CBM',進(jìn)而得到∠MAM'=∠ABC,再由∠MBN=∠ABC,可得∠MBN=∠M'BN,從而得到△NBM≌△NBM',即可求解.【詳解】解:(1)如圖,把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,在正方形ABCD中,∠A=∠BCD=∠ABC=90°,AB=BC,∴∠BCM'+∠BCD=180°,∴點(diǎn)M'、C、N三點(diǎn)共線,∵∠MBN=45°,∴∠ABM+∠CBN=45°,∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=45°,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN=M'N,∵M(jìn)'N=M'C+CN,∴MN=M'C+CN=AM+CN;(2)MN=AM+CN;理由如下:如圖,把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,∵∠A+∠C=180°,∴∠BCM'+∠BCD=180°,∴點(diǎn)M'、C、N三點(diǎn)共線,∵∠MBN=∠ABC,∴∠ABM+∠CBN=∠ABC=∠MBN,∴∠CBN+∠M'BC=∠MBN,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN=M'N,∵M(jìn)'N=M'C+CN,∴MN=M'C+CN=AM+CN;(3)MN=CN-AM,理由如下:如圖,在NC上截取CM'=AM,連接BM',∵在四邊形ABCD中,∠ABC+∠ADC=180°,∴∠C+∠BAD=180°,∵∠BAM+∠BAD=180°,∴∠BAM=∠C,∵AB=BC,∴△ABM≌△CBM',∴AM=CM',BM=BM',∠ABM=∠CBM',∴∠MAM'=∠ABC,∵∠MBN=∠ABC,∴∠MBN=∠MAM'=∠M'BN,∵BN=BN,∴△NBM≌△NBM',∴MN=M'N,∵M(jìn)'N=CN-CM',∴MN=CN-AM.故答案是:MN=CN-AM.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),全等三角形的性質(zhì)和判定,圖形的旋轉(zhuǎn),根據(jù)題意做適當(dāng)輔助線,得到全等三角形是解題的關(guān)鍵.3、(1),;(2)成立,證明見(jiàn)解析;(3)【分析】(1)由點(diǎn)E、F、D分別是AB、AC、BC的中點(diǎn),可得,,,,再由,,得,,由此即可得到答案;(2)連接,只需要證明,得到,,即可得到結(jié)論;(3)連接AD,證明△BDE≌△ADF得到,則,由此求解即可.【詳解】解:(1)∵點(diǎn)E、F、D分別是AB、AC、BC的中點(diǎn),∴,,,,∵,,∴,,∴即,故答案為:,;(2)結(jié)論成立:,,證明:如圖所示,連接,∵,,D為BC的中點(diǎn),∴,且AD平分,,∴,在和中,,∴,∴,,∵,∴,即,即;(3)如圖所示,連接AD,∵,,D為BC的中點(diǎn),∴∴,且AD平分,,∴,∴∠FAD=180°-∠CAD=135°,∠EBD=180°-∠ABC=135°,∴∠FAD=∠EBD,在在和中,,∴△BDE≌△ADF(SAS),∴,∴,∵,∴,∴,∴【點(diǎn)睛】本題主要考查了三角形中位線定理,全等三角形的性質(zhì)與判定,等腰直角三角形的性質(zhì)等等,解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.4、(1)BP=CE,CE⊥BC;(2)仍然成立,見(jiàn)解析;(3)31【分析】(1)連接AC,根據(jù)菱形的性質(zhì)和等邊三角形的性質(zhì)證明△BAP≌△CAE即可證得結(jié)論;(2)(1)中的結(jié)論成立,用(1)中的方法證明△BAP≌△CAE即可;(3)分兩種情形:當(dāng)點(diǎn)P在BD的延長(zhǎng)線上時(shí)或點(diǎn)P在線段DB的延長(zhǎng)線上時(shí),連接AC交BD于點(diǎn)O,由∠BCE=90°,根據(jù)勾股定理求出CE的長(zhǎng)即得到BP的長(zhǎng),再求AO、PO、PD的長(zhǎng)及等邊三角形APE的邊長(zhǎng)可得結(jié)論.【詳解】解:(1)如圖1,連接AC,延長(zhǎng)CE交AD于點(diǎn)H,∵四邊形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等邊三角形,∴AB=AC,∠BAC=60°;∵△APE是等邊三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE=60°﹣∠PAC,∴△BAP≌△CAE(SAS),∴BP=CE;∵四邊形ABCD是菱形,∴∠ABP=∠ABC=30°,∴∠ABP=∠ACE=30°,∵∠ACB=60°,∴∠BCE=60°+30°=90°,∴CE⊥BC;故答案為:BP=CE,CE⊥BC;(2)(1)中的結(jié)論:BP=CE,CE⊥AD仍然成立,理由如下:如圖2中,連接AC,設(shè)CE與AD交于H,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等邊三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等邊三角形,∴AP=AE,∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE(SAS),∴BP=CE,∠ACE=∠ABD=30°,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,∴CE⊥AD;∴(1)中的結(jié)論:BP=CE,CE⊥AD仍然成立;(3)如圖3中,當(dāng)點(diǎn)P在BD的延長(zhǎng)線上時(shí),連接AC交BD于點(diǎn)O,連接CE,BE,作EF⊥AP于F,∵四邊形ABCD是菱形,∴AC⊥BDBD平分∠ABC,∵∠ABC=60°,AB=2,∴∠ABO=30°,∴AO=AB=,OB=AO=3,∴BD=6,由(2)知CE⊥AD,∵AD∥BC,∴CE⊥BC,∵BE=2,BC=AB=2,∴CE==8,由(2)知BP=CE=8,∴DP=2,∴OP=5,∴AP===2,∵△APE是等邊三角形,∴S△AEP=×(2)2=7,如圖4中,當(dāng)點(diǎn)P在DB的延長(zhǎng)線上時(shí),同法可得AP===2,∴S△AEP=×(2)2=31,【點(diǎn)睛】此題是四邊形的綜合題,重點(diǎn)考查菱形的性質(zhì)、等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理等知識(shí)點(diǎn),解題的關(guān)鍵是正確地作出解題所需要的輔助線,將菱形的性質(zhì)與三角形全等的條件聯(lián)系起來(lái),此題難度較大,屬于考試壓軸題.5、(1)以點(diǎn)C為旋轉(zhuǎn)中心將逆時(shí)針旋轉(zhuǎn)就得到;(2)見(jiàn)解析;(3).【分析】(1)只需要利用SAS證明△BCF≌△ACG即可得到答案;(2)法一:以為邊作,與的延長(zhǎng)線交于點(diǎn)K,如圖,先證明,然后證明,得到,則,過(guò)點(diǎn)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論