重難點解析京改版數(shù)學9年級上冊期末試卷附答案詳解(輕巧奪冠)_第1頁
重難點解析京改版數(shù)學9年級上冊期末試卷附答案詳解(輕巧奪冠)_第2頁
重難點解析京改版數(shù)學9年級上冊期末試卷附答案詳解(輕巧奪冠)_第3頁
重難點解析京改版數(shù)學9年級上冊期末試卷附答案詳解(輕巧奪冠)_第4頁
重難點解析京改版數(shù)學9年級上冊期末試卷附答案詳解(輕巧奪冠)_第5頁
已閱讀5頁,還剩34頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

京改版數(shù)學9年級上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、在Rt△ABC中,∠C=90°,a、b、c分別是∠A、∠B、∠C的對邊,則()A. B. C. D.2、如圖,AB是半圓的直徑,點D是弧AC的中點,∠ABC=50°,則∠BCD=()A.105° B.110° C.115° D.120°3、若函數(shù)y=(a﹣1)x2+2x+a2﹣1是二次函數(shù),則()A.a≠1 B.a≠﹣1 C.a=1 D.a=±14、二次函數(shù)的圖象如圖所示,對稱軸是直線.下列結論:①;②;③;④(為實數(shù)).其中結論正確的個數(shù)為(

)A.1個 B.2個 C.3個 D.4個5、如圖,小明在一條東西走向公路的O處,測得圖書館A在他的北偏東方向,且與他相距,則圖書館A到公路的距離為(

)A. B. C. D.6、如圖,正比例函數(shù)和反比例函數(shù)的圖象在第一象限交于點且則的值為(

)A. B. C. D.二、多選題(7小題,每小題2分,共計14分)1、如圖,△ABC中,D在AB上,E在AC上,下列條件中,不能判定DE∥BC的是(

).A. B.C. D.2、如圖,在邊長為4的正方形ABCD中,E、F是AD邊上的兩個動點,且AE=FD,連接BE、CF、BD,CF與BD交于點G,連接AG交BE于點H,連接DH,下列結論中正確的是(

A.△ABG∽△FDG B.HD平分∠EHG C.AG⊥BED.S△HDG:S△HBG=tan∠DAGE.線段DH的最小值是2﹣23、如果α、β都是銳角,下面式子中不正確的是(

)A.sin(α+β)=sinα+sinβ B.cos(α+β)=時,α+β=60°C.若α≥β時,則cosα≥cosβ D.若cosα>sinβ,則α+β>90°4、如圖,在⊙O中,AB是⊙O的直徑,點D是⊙O上一點,點C是弧AD的中點,弦CE⊥AB于點F,過點D的切線交EC的延長線于點G,連接AD,分別交CF、BC于點P、Q,連接AC.則下列結論中正確的是()A.∠BAD=∠ABC B.GP=GD C.點P是△ACQ的外心 D.AP?AD=CQ?CB5、如果一種變換是將拋物線向右平移2個單位或向上平移1個單位,我們把這種變換稱為拋物線的簡單變換.已知拋物線經過兩次簡單變換后的一條拋物線是y=x2+1,則原拋物線的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+176、下列四個命題中正確的命題有(

)A.兩個矩形一定相似 B.兩個菱形都有一個角是40°,那么這兩個菱形相似C.兩個正方形一定相似 D.有一個角相等的兩個等腰梯形相似7、下列多邊形中,一定不相似的是(

)A.兩個矩形 B.兩個菱形 C.兩個正方形 D.兩個平行四邊形第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、《九章算術》是中國古代的數(shù)學專著,是“算經十書”(漢唐之間出現(xiàn)的十部古算書)中最重要的一種.中有下列問題:“今有邑方不知大小,各中開門.出北門八十步有木,出西門二百四十五步見木.問邑方有幾何?”意思是:如圖,點M、點N分別是正方形ABCD的邊AD、AB的中點,,,EF過點A,且步,步,已知每步約40厘米,則正方形的邊長約為__________米.2、如圖,已知是⊙O的直徑,且,弦,點是弧上的點,連接、,若,則的長為______.3、如圖,在RT△ABC中,,點D是的中點,過點D作,垂足為點E,連接,若,,則________.4、如圖,拋物線與直線交于A(-1,P),B(3,q)兩點,則不等式的解集是_____.5、如圖,拋物線的圖象與坐標軸交于點、、,頂點為,以為直徑畫半圓交軸的正半軸于點,圓心為,是半圓上的一動點,連接,是的中點,當沿半圓從點運動至點時,點運動的路徑長是__________.6、如圖,AB是⊙O的直徑,弦CD⊥AB于點E.若AB=10,AE=1,則弦CD的長是_____.7、若二次函數(shù)的頂點在x軸上,則__________.四、解答題(6小題,每小題10分,共計60分)1、某超市經銷一種商品,每件成本為50元.經市場調研,當該商品每件的銷售價為60元時,每個月可銷售300件,若每件的銷售價每增加1元,則每個月的銷售量將減少10件.設該商品每件的銷售價為x元,每個月的銷售量為y件.(1)求y與x的函數(shù)表達式;(2)當該商品每件的銷售價為多少元時,每個月的銷售利潤最大?最大利潤是多少?2、已知二次函數(shù)().(1)求二次函數(shù)圖象的對稱軸;(2)若該二次函數(shù)的圖象開口向上,當時,函數(shù)圖象的最高點為,最低點為,點的縱坐標為,求點和點的坐標;(3)在(2)的條件下,對直線下方二次函數(shù)圖象上的一點,若,求點的坐標.3、如圖,在的正三角形的網(wǎng)格中,的三個頂點都在格點上.請按要求畫圖和計算:①僅用無刻度直尺;②保留作圖痕跡.(1)在圖1中,畫出的邊上的中線.(2)在圖2中,求的值.4、頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經過點C,交x軸于E(4,0).(1)求出拋物線的解析式;(2)如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設點M的橫坐標為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關系式,并求S的最大值;(3)點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應點F恰好落在y軸上時,請直接寫出點P的坐標.5、已知:.(1)求代數(shù)式的值;(2)如果,求的值.6、如圖,拋物線與軸交于兩點,與軸交于點,且,.(1)求拋物線的表達式;(2)點是拋物線上一點.①在拋物線的對稱軸上,求作一點,使得的周長最小,并寫出點的坐標;②連接并延長,過拋物線上一點(點不與點重合)作軸,垂足為,與射線交于點,是否存在這樣的點,使得,若存在,求出點的坐標;若不存在,請說明理由.-參考答案-一、單選題1、C【解析】【分析】根據(jù)Rt△ABC中,cos

B,tan

B,sin

A的定義,進行判斷.【詳解】∵Rt△ABC中,sinA=,cosA=,sin

B=,tanB=,∴選項C正確,選項A、B、D錯誤,故選C.【考點】本題考查了銳角三角函數(shù)的定義.關鍵是熟練掌握銳角三角函數(shù)的定義及其變形.2、C【解析】【分析】連接AC,然后根據(jù)圓內接四邊形的性質,可以得到∠ADC的度數(shù),再根據(jù)點D是弧AC的中點,可以得到∠DCA的度數(shù),直徑所對的圓周角是90°,從而可以求得∠BCD的度數(shù).【詳解】解:連接AC,∵∠ABC=50°,四邊形ABCD是圓內接四邊形,∴∠ADC=130°,∵點D是弧AC的中點,∴CD=AC,∴∠DCA=∠DAC=25°,∵AB是直徑,∴∠BCA=90°,∴∠BCD=∠BCA+∠DCA=115°,故選:C.【考點】本題考查圓周角定理、圓心角、弧、弦的關系,解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.3、A【解析】【分析】利用二次函數(shù)定義進行解答即可.【詳解】解:由題意得:a﹣1≠0,解得:a≠1,故選:A.【考點】本題主要考查了二次函數(shù)的定義,準確計算是解題的關鍵.4、C【解析】【分析】①由拋物線開口方向得到,對稱軸在軸右側,得到與異號,又拋物線與軸正半軸相交,得到,可得出,選項①錯誤;②把代入中得,所以②正確;③由時對應的函數(shù)值,可得出,得到,由,,,得到,選項③正確;④由對稱軸為直線,即時,有最小值,可得結論,即可得到④正確.【詳解】解:①∵拋物線開口向上,∴,∵拋物線的對稱軸在軸右側,∴,∵拋物線與軸交于負半軸,∴,∴,①錯誤;②當時,,∴,∵,∴,把代入中得,所以②正確;③當時,,∴,∴,∵,,,∴,即,所以③正確;④∵拋物線的對稱軸為直線,∴時,函數(shù)的最小值為,∴,即,所以④正確.故選C.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關系:二次項系數(shù)決定拋物線的開口方向和大?。敃r,拋物線向上開口;當時,拋物線向下開口;一次項系數(shù)和二次項系數(shù)共同決定對稱軸的位置:當與同號時,對稱軸在軸左;當與異號時,對稱軸在軸右.常數(shù)項決定拋物線與軸交點:拋物線與軸交于.拋物線與軸交點個數(shù)由判別式確定:時,拋物線與軸有2個交點;時,拋物線與軸有1個交點;時,拋物線與軸沒有交點.5、A【解析】【分析】根據(jù)題意可得△OAB為直角三角形,∠AOB=30°,OA=200m,根據(jù)三角函數(shù)定義即可求得AB的長.【詳解】解:由已知得,∠AOB=90°60°=30°,OA=200m.則AB=OA=100m.故選:A.【考點】本題主要考查了解直角三角形的應用——方向角問題,正確記憶三角函數(shù)的定義是解決本題的關鍵.6、D【解析】【分析】根據(jù)點在直線正比例函數(shù)上,則它的坐標應滿足直線的解析式,故點的坐標為.再進一步利用了勾股定理,求出點的坐標,根據(jù)待定系數(shù)法進一步求解.【詳解】解:作軸于.設A點坐標為,在中,即,解得(舍去)、;∴點坐標為,將代入數(shù)得:.故選:.【考點】此題考查了正比例函數(shù)圖象上點的坐標特征和用待定系數(shù)法求函數(shù)解析式,構造直角三角形求出點A坐標是解題關鍵,構思巧妙,難度不大.二、多選題1、BCD【解析】【分析】利用各選項給定的條件,結合再證明,可得,逐一分析各選項,從而可得答案.【詳解】解:A、而則故A不符合題意;B、與不一定相似,則與不一定相等,不一定平行,故B符合題意;C、,而而不一定相等,故不一定平行,故C符合題意;D、與不一定相似,則與不一定相等,不一定平行,故D符合題意;故選:BCD.【考點】本題考查的是相似三角形的判定與性質,平行線的判定,掌握兩邊對應成比例且夾角相等的兩個三角形相似是解題的關鍵.2、ACDE【解析】【分析】首先證明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性質,相似三角形的判定與性質,等高模型、三邊關系一一判斷即可.【詳解】解:∵四邊形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,,‘∴△ADG≌△CDG(SAS),∴∠DAG=∠DCF,∴∠ABE=∠DAG,∵∠DAG+∠BAH=90°,∴∠ABE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故選項C正確;同法可證:△AGB≌△CGB,∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故選項A正確;∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,又∵∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故選項D正確;取AB的中點O,連接OD、OH,∵正方形的邊長為4,∴AO=OH=×4=2,由勾股定理得,OD==2,∵DH≥OD-OH,∴O、D、H三點共線時,DH最小,∴DH最小=2-2.故選項E正確,無法證明DH平分∠EHG,故選項B錯誤,故選項ACDE正確,故選:ACDE.【考點】本題考查了正方形的性質,相似三角形的判定與性質,全等三角形的判定與性質,三角形的三邊關系,三角函數(shù),勾股定理、等高模型等知識,解題的關鍵是靈活運用所學知識解決問題,難點在于選項E作輔助線并確定出DH最小時的情況.3、ACD【解析】【分析】可以選擇特殊值代入,進行分析.【詳解】解:A中,如α=30°,β=60°時,而sin(α+β)=sin90°=1,sin30°+sin60°=,顯然錯誤,符合題意;B中,根據(jù)cos60°=,正確,不符合題意;C中,如α=60°,β=30°時,而cos60°=,cos30°=,顯然錯誤,符合題意;D中,如cos30°>sin45°,錯誤,符合題意.故選:ACD.【考點】本題考查了特殊角的三角函數(shù)值,記憶特殊角的三角函數(shù)值是解題的關鍵.4、BCD【解析】【分析】A錯誤,假設成立,推出矛盾即可;B正確.想辦法證明即可;C正確.想辦法證明即可;D正確.證明,可得,證明,可得,證明,可得,由此即可解決問題;【詳解】解:A錯誤,假設,則,,,顯然不可能,故A錯誤.B正確.連接.是切線,,,,,,,,,故B正確.C正確.,,,,,,是直徑,,,,,,,點是的外心.故C正確.D正確.連接.,,,,,,,,可得,,,,可得,.故D正確,故選:BCD.【考點】本題考查相似三角形的判定和性質、垂徑定理、圓周角定理、切線的性質等知識,解題的關鍵是正確現(xiàn)在在相似三角形解決問題,屬于中考選擇題中的壓軸題.5、ACD【解析】【分析】根據(jù)圖象左移加,右移減,圖象上移加,下移減,可得答案.【詳解】解:A、y=x2?1,先向上平移1個單位得到y(tǒng)=x2,再向上平移1個單位可以得到y(tǒng)=x2+1,故A符合題意;B、y=x2+6x+5=(x+3)2?4,右移3個單位,再上移5得到y(tǒng)=x2+1,故B不符合題意;C、y=x2+4x+4=(x+2)2,先向右平移2個單位得到y(tǒng)=(x+2?2)2=x2,再向上平移1個單位得到y(tǒng)=x2+1,故C符合題意;D、y=x2+8x+17=(x+4)2+1,先向右平移2個單位得到y(tǒng)=(x+4?2)2+1,再向右平移1個單位得到y(tǒng)=(x+4?2-2)2+1=x2+1,故D符合題意.故選:ACD.【考點】本題考查了二次函數(shù)圖象與幾何變換,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式,注意由目標函數(shù)圖象到原函數(shù)圖象方向正好相反.6、BC【解析】【分析】根據(jù)兩個圖形相似的性質及判定方法,對應邊的比相等,對應角相等,兩個條件同時滿足來判斷正誤.【詳解】解:A兩個矩形對應角都是直角相等,對應邊不一定成比例,所以不一定相似,故本小題錯誤;B兩個菱形有一個角相等,則其它對應角也相等,對應邊成比例,所以一定相似,故本小題正確;C兩個正方形一定相似,正確;D有一個角相等的兩個等腰梯形,對應角一定相等,但對應邊的比不一定相等,故本小題錯誤.故選:BC.【考點】本題考查的是相似多邊形的判定及菱形,矩形,正方形,等腰梯形的性質及其定義.7、ABD【解析】【分析】利用相似多邊形的對應邊的比相等,對應角相等分析.【詳解】解:要判斷兩個多邊形是否相似,需要看對應角是否相等,對應邊的比是否相等.矩形、菱形、平行四邊形都屬于形狀不唯一確定的圖形,即對應角、對應邊的比不一定相等,故不一定相似,選項A、B、D符合題意;而兩個正方形,對應角都是90°,對應邊的比也都相等,故一定相似,選項C不符合題意.故選:ABD.【考點】本題考查了相似多邊形的識別.判定兩個圖形相似的依據(jù)是:對應邊的比相等,對應角相等.兩個條件必須同時具備.三、填空題1、112【解析】【分析】根據(jù)題意,可知Rt△AEN∽Rt△FAN,從而可以得到對應邊的比相等,從而可以求得正方形的邊長.【詳解】解:∵點M、點N分別是正方形ABCD的邊AD、AB的中點,∴,∴AM=AN,由題意可得,∠ANF=∠EMA=90°,∠NAF+∠AFN=∠NAF+∠EAM=90°,∴∠AFN=∠EAM,∴Rt△AEM∽Rt△FAN,∴,∵AM=AN,∴,解得:AM=140,∴AD=2AM=280(步),∴(米)故答案為:112.【考點】本題考查相似三角形的應用、數(shù)學常識、正方形的性質,解答本題的關鍵是明確題意.利用相似三角形的性質和數(shù)形結合的思想解答.2、9【解析】【分析】連接OC和OE,由同弧所對的圓周角等于圓心角的一半求出∠COB=60°,再在△COH中求出CH,最后由垂徑定理求出CD.【詳解】解:連接OC和OE,如下圖所示:由同弧所對的圓周角等于圓心角的一半可知,∠A=∠EOB,∠D=∠COE,∵∠A+∠D=30°,∴∠EOB+∠COE=∠COB=30°,∴∠COB=60°,∵CD⊥AB,∴△COH為30°,60°,90°的三角形,其三邊之比為,∴CH=,∴CD=2CH=9,故答案為:9.【考點】本題考查了圓周角定理及垂徑定理等相關知識點,本題的關鍵是求出∠COB=60°.3、3【解析】【分析】根據(jù)直角三角形的性質得到AB=10,利用勾股定理求出AC,再說明DE∥AC,得到,即可求出DE.【詳解】解:∵∠ACB=90°,點D為AB中點,∴AB=2CD=10,∵BC=8,∴AC==6,∵DE⊥BC,AC⊥BC,∴DE∥AC,∴,即,∴DE=3,故答案為:3.【考點】本題考查了直角三角形的性質,勾股定理,平行線分線段成比例,解題的關鍵是通過平行得到比例式.4、或.【解析】【分析】由可變形為,即比較拋物線與直線之間關系,而直線PQ:與直線AB:關于與y軸對稱,由此可知拋物線與直線交于,兩點,再觀察兩函數(shù)圖象的上下位置關系,即可得出結論.【詳解】解:∵拋物線與直線交于,兩點,∴,,∴拋物線與直線交于,兩點,觀察函數(shù)圖象可知:當或時,直線在拋物線的下方,∴不等式的解集為或.故答案為或.【考點】本題考查了二次函數(shù)與不等式,根據(jù)兩函數(shù)圖象的上下位置關系找出不等式的解集是解題的關鍵.5、【解析】【分析】先求出A、B、E的坐標,然后求出半圓的直徑為4,由于E為定點,P是半圓AB上的動點,N為EP的中點,所以N的運動路經為直徑為2的半圓,計算即可.【詳解】解:,∴點E的坐標為(1,-2),令y=0,則,解得,,,∴A(-1,0),B(3,0),∴AB=4,由于E為定點,P是半圓AB上的動點,N為EP的中點,所以N的運動路經為直徑為2的半圓,如圖,∴點運動的路徑長是.【考點】本題屬于二次函數(shù)和圓的綜合問題,考查了運動路徑的問題,熟練掌握二次函數(shù)和圓的基礎是解題的關鍵.6、6【解析】【分析】連接OC,根據(jù)勾股定理求出CE,根據(jù)垂徑定理計算即可.【詳解】連接OC,∵AB是⊙O的直徑,弦CD⊥AB,∴CD=2CE,∠OEC=90°,∵AB=10,AE=1,∴OC=5,OE=5﹣1=4,在Rt△COE中,CE==3,∴CD=2CE=6,故答案為6.【考點】本題考查了垂徑定理、勾股定理,掌握垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧是解題的關鍵.7、-2或【解析】【分析】根據(jù)二次函數(shù)一般式的頂點坐標公式表示出頂點,再根據(jù)頂點在x軸上,建立等量關系求解即可.【詳解】解:的頂點坐標為:∵頂點在x軸上∴解得:故答案為:或【考點】本題考查二次函數(shù)一般式的頂點坐標,掌握二次函數(shù)一般式的頂點坐標公式是解題關鍵.四、解答題1、(1)y=-10x+900;(2)每件銷售價為70元時,獲得最大利潤;最大利潤為4000元【解析】【分析】(1)根據(jù)等量關系“利潤=(售價﹣進價)×銷量”列出函數(shù)表達式即可.(2)根據(jù)(1)中列出函數(shù)關系式,配方后依據(jù)二次函數(shù)的性質求得利潤最大值.【詳解】解:(1)根據(jù)題意,y=300﹣10(x﹣60)=-10x+900,∴y與x的函數(shù)表達式為:y=-10x+900;(2)設利潤為w,由(1)知:w=(x﹣50)(-10x+900)=﹣10x2+1400x﹣45000,∴w=﹣10(x﹣70)2+4000,∴每件銷售價為70元時,獲得最大利潤;最大利潤為4000元.【考點】本題考查的是二次函數(shù)在實際生活中的應用.此題難度不大,解題的關鍵是理解題意,找到等量關系,求得二次函數(shù)解析式.2、(1)直線x=1;(2);;(3)或【解析】【分析】(1)利用對稱軸公式計算即可;(2)構建方程求出a的值即可解決問題;(3)先求出直線MN的解析式,然后設點的坐標為,過點作軸的垂線交直線于點,得到PQ的長度,根據(jù)三角形的面積公式,即可求出答案.【詳解】解:(1)∵二次函數(shù)(),∴該二次函數(shù)圖象的對稱軸是直線:;(2)∵該二次函數(shù)的圖象開口向上,對稱軸為直線,,∴當時,取得最大值,即,∴,得:,∴該二次函數(shù)的表達式為:,即點的坐標為.(3)設直線的解析式為,則,解得:,∴設直線的解析式為:,設點的坐標為,過點作軸的垂線交直線于點,如圖則點的坐標是,∴,∴,解得:,,∴點的坐標是或.【考點】本題考查二次函數(shù)的性質,一次函數(shù)的性質,函數(shù)的最值問題等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.3、(1)答案見解析;(2).【解析】【分析】(1)利用平行四邊形的性質分別作出AB、AC的中點E、F,再利用三角形重心的性質即可作出△ABC的BC邊上的中線AD;(2)利用平行線的性質可得∠AEC=∠FDC,再利用菱形及等邊三角形的性質可求得DH、CH的長,繼而求得CD的長,從而求得答案.【詳解】(1)如圖,線段AD就是所求作的中線;(2)如圖:在的正三角形的網(wǎng)格中,∵MN∥AB∥FD,∴∠AEC=∠FDC,∵四邊形CMGN為菱形,且邊長為5,∴CG⊥MN,∴CG⊥FD,,∴CG=2OG=5,∵△GFD為等邊三角形,且邊長為2,同理:HG=,∴在Rt△CDH中,∠CHD=90,DH=1,CH=CG-HG=4,∴,即,∴,∴.【考點】本題考查了作圖-應用與設計作圖,菱形的性質、等邊三角形的性質,平行線的性質,勾股定理的應用.首先要理解題意,弄清問題中對所作圖形的要求,結合對應幾何圖形的性質和基本作圖的方法作圖.4、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當x=時,S有最大值,最大值為;(3)存在,點P的坐標為(4,0)或(,0).【解析】【分析】(1)將點E代入直線解析式中,可求出點C的坐標,將點C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點式,可求出點D的坐標,設直線BD的解析式,代入點B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設點P的坐標,則點G的坐標可表示,點H的坐標可表示,HG長度可表示,利用翻折推出CG=HG,列等式求解即可.【詳解】(1)將點E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設直線BD的解析式為y=kx+b,代入點B、D,,解得,∴直線BD的解析式為y=﹣2x+6,則點M的坐標為(x,﹣2x+6),∴S=(3+6﹣2x)?x?

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論