中考數(shù)學(xué)總復(fù)習(xí)《 圓》模擬題庫含答案詳解(基礎(chǔ)題)_第1頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》模擬題庫含答案詳解(基礎(chǔ)題)_第2頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》模擬題庫含答案詳解(基礎(chǔ)題)_第3頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》模擬題庫含答案詳解(基礎(chǔ)題)_第4頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》模擬題庫含答案詳解(基礎(chǔ)題)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

中考數(shù)學(xué)總復(fù)習(xí)《圓》模擬題庫考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,⊙O的直徑垂直于弦,垂足為.若,,則的長是(

)A. B. C. D.2、以原點(diǎn)O為圓心的圓交x軸于A、B兩點(diǎn),交y軸的正半軸于點(diǎn)C,D為第一象限內(nèi)⊙O上的一點(diǎn),若∠DAB=25°,則∠OCD=(

).A.50° B.40° C.70° D.30°3、如圖,是的內(nèi)接三角形,,是直徑,,則的長為()A.4 B. C. D.4、如圖1,一個扇形紙片的圓心角為90°,半徑為6.如圖2,將這張扇形紙片折疊,使點(diǎn)A與點(diǎn)O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為()A.6π﹣ B.6π﹣9 C.12π﹣ D.5、如圖,公園內(nèi)有一個半徑為18米的圓形草坪,從地走到地有觀賞路(劣?。┖捅忝衤罚ň€段).已知、是圓上的點(diǎn),為圓心,,小強(qiáng)從走到,走便民路比走觀賞路少走(

)米.A. B.C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在正五邊形ABCDE中,AC與BE相交于點(diǎn)F,則∠AFE的度數(shù)為_____.2、如圖,已知是的直徑,是的切線,連接交于點(diǎn),連接.若,則的度數(shù)是_________.3、如圖所示的網(wǎng)格由邊長為個單位長度的小正方形組成,點(diǎn)、、、在直角坐標(biāo)系中的坐標(biāo)分別為,,,則內(nèi)心的坐標(biāo)為______.4、如圖,在矩形中,是邊上一點(diǎn),連接,將矩形沿翻折,使點(diǎn)落在邊上點(diǎn)處,連接.在上取點(diǎn),以點(diǎn)為圓心,長為半徑作⊙與相切于點(diǎn).若,,給出下列結(jié)論:①是的中點(diǎn);②⊙的半徑是2;③;④.其中正確的是________.(填序號)5、如圖,正五邊形ABCDE和正三角形AMN都是⊙O的內(nèi)接多邊形,則∠BOM=_______.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,在平面直角坐標(biāo)系中,拋物線過點(diǎn),,與y軸交于點(diǎn)C,連接BC,點(diǎn)N是第一象限拋物線上一點(diǎn),連接NA,交y軸于點(diǎn)E,.(1)求拋物線的解析式;(2)求線段AN的長;(3)若點(diǎn)M在第三象限拋物線上,連接MN,,則這時點(diǎn)M的坐標(biāo)為______(直接寫出結(jié)果).2、如圖,為的直徑,C為上一點(diǎn),弦的延長線與過點(diǎn)C的切線互相垂直,垂足為D,,連接.(1)求的度數(shù);(2)若,求的長.3、如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),D在AB的延長線上,且∠BCD=∠A.(1)求證:CD是⊙O的切線;(2)若⊙O的半徑為3,CD=4,求BD的長.4、如圖,四邊形內(nèi)接于,對角線,垂足為,于點(diǎn),直線與直線于點(diǎn).(1)若點(diǎn)在內(nèi),如圖1,求證:和關(guān)于直線對稱;(2)連接,若,且與相切,如圖2,求的度數(shù).5、如圖,已知點(diǎn)在上,點(diǎn)在外,求作一個圓,使它經(jīng)過點(diǎn),并且與相切于點(diǎn).(要求寫出作法,不要求證明)-參考答案-一、單選題1、C【解析】【分析】根據(jù)直角三角形的性質(zhì)可求出CE=1,再根據(jù)垂徑定理可求出CD.【詳解】解:∵⊙O的直徑垂直于弦,∴∵,,∴CE=1∴CD=2.故選:C.【考點(diǎn)】本題考查了直角三角形的性質(zhì),垂徑定理等知識點(diǎn),能求出CE=DE是解此題的關(guān)鍵.2、C【解析】【分析】根據(jù)圓周角定理求出∠DOB,根據(jù)等腰三角形性質(zhì)求出∠OCD=∠ODC,根據(jù)三角形內(nèi)角和定理求出即可.【詳解】解:連接OD,∵∠DAB=25°,∴∠BOD=2∠DAB=50°,∴∠COD=90°-50°=40°,∵OC=OD,∴∠OCD=∠ODC=(180°-∠COD)=70°,故選:C.【考點(diǎn)】本題考查了圓周角定理,等腰三角形性質(zhì),三角形內(nèi)角和定理的應(yīng)用,主要考查學(xué)生的推理能力,題目比較典型,難度適中.3、B【解析】【分析】連接BO,根據(jù)圓周角定理可得,再由圓內(nèi)接三角形的性質(zhì)可得OB垂直平分AC,再根據(jù)正弦的定義求解即可.【詳解】如圖,連接OB,∵是的內(nèi)接三角形,∴OB垂直平分AC,∴,,又∵,∴,∴,又∵AD=8,∴AO=4,∴,解得:,∴.故答案選B.【考點(diǎn)】本題主要考查了圓的垂徑定理的應(yīng)用,根據(jù)圓周角定理求角度是解題的關(guān)鍵.4、A【解析】【分析】連接OD,如圖,利用折疊性質(zhì)得由弧AD、線段AC和CD所圍成的圖形的面積等于陰影部分的面積,AC=OC,則OD=2OC=6,CD=3,從而得到∠CDO=30°,∠COD=60°,然后根據(jù)扇形面積公式,利用由弧AD、線段AC和CD所圍成的圖形的面積=S扇形AOD-S△COD,進(jìn)行計(jì)算即可.【詳解】解:連接OD,如圖,∵扇形紙片折疊,使點(diǎn)A與點(diǎn)O恰好重合,折痕為CD,∴AC=OC,∴OD=2OC=6,∴CD=,∴∠CDO=30°,∠COD=60°,∴由弧AD、線段AC和CD所圍成的圖形的面積=S扇形AOD﹣S△COD=﹣=6π﹣,∴陰影部分的面積為6π﹣.故選A.【考點(diǎn)】本題考查了扇形面積的計(jì)算:陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.記住扇形面積的計(jì)算公式.也考查了折疊性質(zhì).5、D【解析】【分析】作OC⊥AB于C,如圖,根據(jù)垂徑定理得到AC=BC,再利用等腰三角形的性質(zhì)和三角形內(nèi)角和計(jì)算出∠A,從而得到OC和AC,可得AB,然后利用弧長公式計(jì)算出的長,最后求它們的差即可.【詳解】解:作OC⊥AB于C,如圖,則AC=BC,∵OA=OB,∴∠A=∠B=(180°-∠AOB)=30°,在Rt△AOC中,OC=OA=9,AC=,∴AB=2AC=,又∵=,∴走便民路比走觀賞路少走米,故選D.【考點(diǎn)】本題考查了垂徑定理:垂徑定理和勾股定理相結(jié)合,構(gòu)造直角三角形,可解決計(jì)算弦長、半徑、弦心距等問題.二、填空題1、72°【解析】【分析】首先根據(jù)正五邊形的性質(zhì)得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形內(nèi)角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,最后利用三角形的外角的性質(zhì)得到∠AFE=∠BAC+∠ABE=72°.【詳解】∵五邊形ABCDE為正五邊形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案為72°.【考點(diǎn)】本題考查的是正多邊形和圓,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵.2、25【解析】【分析】先由切線的性質(zhì)可得∠OAC=90°,再根據(jù)三角形的內(nèi)角和定理可求出∠AOD=50°,最后根據(jù)“同弧所對的圓周角等于圓心角的一半”即可求出∠B的度數(shù).【詳解】解:∵是的切線,∴∠OAC=90°∵,∴∠AOD=50°,∴∠B=∠AOD=25°故答案為:25.【考點(diǎn)】本題考查了切線的性質(zhì)和圓周角定理,掌握圓周角定理是解題的關(guān)鍵.3、(2,3)【解析】【分析】根據(jù)A、B、C三點(diǎn)的坐標(biāo)建立如圖所示的坐標(biāo)系,計(jì)算出△ABC各邊的長度,易得該三角形是直角三角形,設(shè)BC的關(guān)系式為:y=kx+b,求出BC與x軸的交點(diǎn)G的坐標(biāo),證出點(diǎn)A與點(diǎn)G關(guān)于BD對稱,射線BD是∠ABC的平分線,三角形的內(nèi)心在BD上,設(shè)點(diǎn)M為三角形的內(nèi)心,內(nèi)切圓的半徑為r,在BD上找一點(diǎn)M,過點(diǎn)M作ME⊥AB,過點(diǎn)M作MF⊥AC,且ME=MF=r,求出r的值,在△BEM中,利用勾股定理求出BM的值,即可得到點(diǎn)M的坐標(biāo).【詳解】解:根據(jù)A、B、C三點(diǎn)的坐標(biāo)建立如圖所示的坐標(biāo)系,根據(jù)題意可得:AB=,AC=,BC=,∵,∴∠BAC=90°,設(shè)BC的關(guān)系式為:y=kx+b,代入B,C,可得,解得:,∴BC:,當(dāng)y=0時,x=3,即G(3,0),∴點(diǎn)A與點(diǎn)G關(guān)于BD對稱,射線BD是∠ABC的平分線,設(shè)點(diǎn)M為三角形的內(nèi)心,內(nèi)切圓的半徑為r,在BD上找一點(diǎn)M,過點(diǎn)M作ME⊥AB,過點(diǎn)M作MF⊥AC,且ME=MF=r,∵∠BAC=90°,∴四邊形MEAF為正方形,S△ABC=,解得:,即AE=EM=,∴BE=,∴BM=,∵B(-3,3),∴M(2,3),故答案為:(2,3).【考點(diǎn)】本題考查三角形內(nèi)心、平面直角坐標(biāo)系、一次函數(shù)的解析式、勾股定理和正方形的判定與性質(zhì)等相關(guān)知識點(diǎn),把握內(nèi)心是三角形內(nèi)接圓的圓心這個概念,靈活運(yùn)用各種知識求解即可.4、①②④.【解析】【詳解】解:①∵AF是AB翻折而來,∴AF=AB=6.∵AD=BC=,∴DF==3,∴F是CD中點(diǎn);∴①正確;②連接OP,∵⊙O與AD相切于點(diǎn)P,∴OP⊥AD.∵AD⊥DC,∴OP∥CD,∴,設(shè)OP=OF=x,則,解得:x=2,∴②正確;③∵Rt△ADF中,AF=6,DF=3,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF.∵∠AFE=90°,∴∠EFC=90°﹣∠AFD=30°,∴EF=2EC,∴AE=4CE,∴③錯誤;④連接OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG為等邊△.同理△OPG為等邊△,∴∠POG=∠FOG=60°,OH=OG=,S扇形OPG=S扇形OGF,∴S陰影=(S矩形OPDH﹣S扇形OPG﹣S△OGH)+(S扇形OGF﹣S△OFG)=S矩形OPDH﹣S△OFG==,∴④正確;故答案為①②④.5、48°【解析】【分析】連接OA,分別求出正五邊形ABCDE和正三角形AMN的中心角,結(jié)合圖形計(jì)算即可.【詳解】連接OA,∵五邊形ABCDE是正五邊形,∴∠AOB==72°,∵△AMN是正三角形,∴∠AOM==120°,∴∠BOM=∠AOM-∠AOB=48°,故答案為48°.點(diǎn)睛:本題考查的是正多邊形與圓的有關(guān)計(jì)算,掌握正多邊形的中心角的計(jì)算公式是解題的關(guān)鍵.三、解答題1、(1)(2)(3)【解析】【分析】(1)把,代入,待定系數(shù)法求解析式即可;(2)根據(jù)解析式求得,證明≌可得,進(jìn)而可得,求得直線AN的解析式為,聯(lián)立拋物線解析式即可求得點(diǎn)的坐標(biāo),過點(diǎn)N作軸于點(diǎn)D,勾股定理即可求得線段AN的長;(3)設(shè)的外接圓為圓R,圓心R的坐標(biāo)為,過點(diǎn)R作軸于點(diǎn)G,過點(diǎn)M作的延長線于點(diǎn)H,連接AR,MR,NR.證明≌可得,,,進(jìn)而表示出點(diǎn),將點(diǎn)M的坐標(biāo)代入拋物線表達(dá)式得出④式,根據(jù)得出⑤式,聯(lián)立求解即可求得點(diǎn)的坐標(biāo)(1)把,代入得:,解得,故拋物線的表達(dá)式為.(2)令,得,∴,.∵,∴.∵,,∴≌.∴,∴.設(shè)直線AN的解析式為,把,代入得:,解得,故直線AN的解析式為.由,解得,.故點(diǎn).過點(diǎn)N作軸于點(diǎn)D,則,,根據(jù)勾股定理得:.(3).設(shè)的外接圓為圓R,過點(diǎn)R作軸于點(diǎn)G,過點(diǎn)M作的延長線于點(diǎn)H,連接AR,MR,NR.當(dāng)時,則,設(shè)圓心R的坐標(biāo)為,∵,,∴,∵,,∴≌(AAS),∴,,∴點(diǎn),將點(diǎn)M的坐標(biāo)代入拋物線表達(dá)式得:④,由題意得:,即⑤,聯(lián)立④⑤并解得:,故點(diǎn).【考點(diǎn)】本題考查了二次函數(shù)的綜合題,待定系數(shù)法求解析式,勾股定理,圓周角定理,等腰三角形的性質(zhì),全等三角形的性質(zhì)與判定,第三問中正確的添加輔助線是解題的關(guān)鍵.2、(1)55°;(2).【解析】【分析】(1)連接OC,如圖,利用切線的性質(zhì)得到OC⊥CD,則判斷OC∥AE,所以∠DAC=∠OCA,然后利用∠OCA=∠OAC得到∠OAB的度數(shù),即可求解;(2)利用(1)的結(jié)論先求得∠AEO∠EAO70°,再平行線的性質(zhì)求得∠COE=70°,然后利用弧長公式求解即可.【詳解】解:(1)連接OC,如圖,∵CD是⊙O的切線,∴OC⊥CD,∵AE⊥CD,∴OC∥AE,∴∠DAC=∠OCA,∵OA=OC,∠CAD=35°,∴∠OAC=∠OCA=∠CAD=35°,∵AB為⊙O的直徑,∴∠ACB=90°,∴∠B=90°-∠OAC=55°;(2)連接OE,OC,如圖,由(1)得∠EAO=∠OAC+∠CAD=70°,∵OA=OE,∴∠AEO∠EAO70°,∵OC∥AE,∴∠COE=∠AEO=70°,∴AB=2,則OC=OE=1,∴的長為.【考點(diǎn)】本題考查了切線的性質(zhì),圓周角定理,弧長公式等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線.3、(1)證明見解析(2)2【解析】【分析】(1)連接OC,由AB是⊙O的直徑可得出∠ACB=90°,即∠ACO+∠OCB=90°,由等腰三角形的性質(zhì)結(jié)合∠BCD=∠A,即可得出∠OCD=90°,即CD是⊙O的切線;(2)在Rt△OCD中,由勾股定理可求出OD的值,進(jìn)而可得出BD的長.【詳解】解:(1)如圖,連接OC.∵AB是⊙O的直徑,C是⊙O上一點(diǎn),∴∠ACB=90°,即∠ACO+∠OCB=90°.∵OA=OC,∠BCD=∠A,∴∠ACO=∠A=∠BCD,∴∠BCD+∠OCB=90°,即∠OCD=90°,∴CD是⊙O的切線.(2)在Rt△OCD中,∠OCD=90°,OC=3,CD=4,∴OD==5,∴BD=OD﹣OB=5﹣3=2.4、(1)見解析;(2)【解析】【分析】(1)根據(jù)垂直及同弧所對圓周角相等性質(zhì),可得,可證與全等,得到,進(jìn)一步即可證點(diǎn)和關(guān)于直線成軸對稱;(2)作出相應(yīng)輔助線如解析圖,可得與全等,利用全等三角形的性質(zhì)及切線的性質(zhì),可得,根據(jù)平行線的性質(zhì)及三角形內(nèi)角和即可得出答案.【詳解】解:(1)證明:∵,,∴,∵,∴,又∵同弧所對圓周角相等,∴,∴,在與中,∴,∴,又,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論