中考數(shù)學(xué)總復(fù)習(xí)《 圓》??寄M試題及參考答案詳解(輕巧奪冠)_第1頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》??寄M試題及參考答案詳解(輕巧奪冠)_第2頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》??寄M試題及參考答案詳解(輕巧奪冠)_第3頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》模考模擬試題及參考答案詳解(輕巧奪冠)_第4頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》??寄M試題及參考答案詳解(輕巧奪冠)_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

中考數(shù)學(xué)總復(fù)習(xí)《圓》??寄M試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,AB是半圓的直徑,點D是弧AC的中點,∠ABC=50°,則∠BCD=()A.105° B.110° C.115° D.120°2、如圖所示,矩形紙片中,,把它分割成正方形紙片和矩形紙片后,分別裁出扇形和半徑最大的圓,恰好能作為一個圓錐的底面和側(cè)面,則圓錐的表面積為(

)A. B. C. D.3、如圖,已知是的兩條切線,A,B為切點,線段交于點M.給出下列四種說法:①;②;③四邊形有外接圓;④M是外接圓的圓心,其中正確說法的個數(shù)是(

)A.1 B.2 C.3 D.44、如圖,在△ABC中,AG平分∠CAB,使用尺規(guī)作射線CD,與AG交于點E,下列判斷正確的是(

A.AG平分CDB.C.點E是△ABC的內(nèi)心D.點E到點A,B,C的距離相等5、如圖是一圓錐的側(cè)面展開圖,其弧長為,則該圓錐的全面積為A.60π B.85π C.95π D.169π第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,把一個圓錐沿母線OA剪開,展開后得到扇形AOC,已知圓錐的高h為12cm,OA=13cm,則扇形AOC中的長是_____cm(計算結(jié)果保留π).2、如圖,一下水管道橫截面為圓形,直徑為100cm,下雨前水面寬為60cm,一場大雨過后,水面寬為80cm,則水位上升______cm.3、如圖,圓錐的母線長OA=6,底面圓的半徑為,一只小蟲在圓線底面的點A處繞圓錐側(cè)面一周又回到點A處,則小蟲所走的最短路程為___________(結(jié)果保留根號)4、如圖,,,以為直徑作半圓,圓心為點;以點為圓心,為半徑作,過點作的平行線交兩弧于點、,則陰影部分的面積是________.5、如圖1是臺灣某品牌手工蛋卷的外包裝盒,其截面圖如圖2所示,盒子上方是一段圓弧(弧MN).D,E為手提帶的固定點,DE與弧MN所在的圓相切,DE=2.手提帶自然下垂時,最低點為C,且呈拋物線形,拋物線與弧MN交于點F,G.若△CDE是等腰直角三角形,且點C,F(xiàn)到盒子底部AB的距離分別為1,,則弧MN所在的圓的半徑為_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,在⊙O中,,∠ACB=60°,求證∠AOB=∠BOC=∠COA.2、(1)求圖(1)中陰影部分的面積(單位:厘米);(2)如圖(2)所示,已知大正方形的邊長為10厘米,小正方形的邊長為7厘米,求陰影部分面積.(結(jié)果保留)3、如圖所示,四邊形ABCD的頂點在同一個圓上,另一個圓的圓心在AB邊上,且該圓與四邊形ABCD的其余三條邊相切.求證:.4、在平面直角坐標(biāo)系中,⊙C與x軸交于點A,B,且點B的坐標(biāo)為(8,0),與y軸相切于點D(0,4),過點A,B,D的拋物線的頂點為E.(1)求圓心C的坐標(biāo)與拋物線的解析式;(2)判斷直線AE與⊙C的位置關(guān)系,并說明理由;(3)若點M,N是直線y軸上的兩個動點(點M在點N的上方),且MN=1,請直接寫出的四邊形EAMN周長的最小值.5、如圖,已知等邊△ABC內(nèi)接于☉O,BD為內(nèi)接正十二邊形的一邊,CD=5cm,求☉O的半徑R.-參考答案-一、單選題1、C【解析】【分析】連接AC,然后根據(jù)圓內(nèi)接四邊形的性質(zhì),可以得到∠ADC的度數(shù),再根據(jù)點D是弧AC的中點,可以得到∠DCA的度數(shù),直徑所對的圓周角是90°,從而可以求得∠BCD的度數(shù).【詳解】解:連接AC,∵∠ABC=50°,四邊形ABCD是圓內(nèi)接四邊形,∴∠ADC=130°,∵點D是弧AC的中點,∴CD=AC,∴∠DCA=∠DAC=25°,∵AB是直徑,∴∠BCA=90°,∴∠BCD=∠BCA+∠DCA=115°,故選:C.【考點】本題考查圓周角定理、圓心角、弧、弦的關(guān)系,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.2、B【解析】【分析】設(shè)圓錐的底面的半徑為rcm,則DE=2rcm,利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長得到2πr,解方程求出r,然后求得直徑即可.【詳解】解:設(shè)圓錐的底面的半徑為rcm,則AE=BF=6-2r根據(jù)題意得2πr,解得r=1,側(cè)面積=,底面積=所以圓錐的表面積=,故選:B.【考點】本題綜合考查有關(guān)扇形和圓錐的相關(guān)計算.解題思路:解決此類問題時要緊緊抓住兩者之間的兩個對應(yīng)關(guān)系:(1)圓錐的母線長等于側(cè)面展開圖的扇形半徑;(2)圓錐的底面周長等于側(cè)面展開圖的扇形弧長.正確對這兩個關(guān)系的記憶是解題的關(guān)鍵.3、C【解析】【分析】由切線長定理判斷①,結(jié)合等腰三角形的性質(zhì)判斷②,利用切線的性質(zhì)與直角三角形的斜邊上的中線等于斜邊的一半,判斷③,利用反證法判斷④.【詳解】如圖,是的兩條切線,故①正確,故②正確,是的兩條切線,取的中點,連接,則所以:以為圓心,為半徑作圓,則共圓,故③正確,M是外接圓的圓心,與題干提供的條件不符,故④錯誤,綜上:正確的說法是個,故選C.【考點】本題考查的是切線長定理,三角形的外接圓,四邊形的外接圓,掌握以上知識是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)作法可得CD平分∠ACB,結(jié)合題意即可求解.【詳解】解:由作法得CD平分∠ACB,

∵AG平分∠CAB,∴E點為△ABC的內(nèi)心故答案為:C.【考點】此題考查了尺規(guī)作圖(角平分線),以及三角形角平分線的性質(zhì),熟練掌握相關(guān)基本性質(zhì)是解題的關(guān)鍵.5、B【解析】【分析】設(shè)圓錐的底面圓的半徑為r,扇形的半徑為R,先根據(jù)弧長公式得到=10π,解得R=12,再利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長得到2π?r=10π,解得r=5,然后計算底面積與側(cè)面積的和.【詳解】設(shè)圓錐的底面圓的半徑為r,扇形的半徑為R,根據(jù)題意得=10π,解得R=12,2π?r=10π,解得r=5,所以該圓錐的全面積=π?52+?10π?12=85π.故選B.【考點】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.二、填空題1、10π【解析】【分析】根據(jù)的長就是圓錐的底面周長即可求解.【詳解】解:∵圓錐的高h為12cm,OA=13cm,∴圓錐的底面半徑為=5cm,∴圓錐的底面周長為10πcm,∴扇形AOC中的長是10πcm,故答案為10π.【考點】本題考查了圓錐的計算,解題的關(guān)鍵是了解圓錐的底面周長等于展開扇形的弧長.2、10或70【解析】【分析】分水位在圓心下以及圓心上兩種情況,畫出符合題意的圖形進行求解即可得.【詳解】如圖,作半徑于C,連接OB,由垂徑定理得:=AB=×60=30cm,在中,,當(dāng)水位上升到圓心以下時

水面寬80cm時,則,水面上升的高度為:;當(dāng)水位上升到圓心以上時,水面上升的高度為:,綜上可得,水面上升的高度為30cm或70cm,故答案為:10或70.【考點】本題考查了垂徑定理的應(yīng)用,掌握垂徑定理、靈活運用分類討論的思想是解題的關(guān)鍵.3、6【解析】【分析】利用圓錐的底面周長等于側(cè)面展開圖的弧長可得圓錐側(cè)面展開圖的圓心角,求出側(cè)面展開圖中兩點間的距離即為最短距離.【詳解】∵底面圓的半徑為,∴圓錐的底面周長為2×=3,設(shè)圓錐的側(cè)面展開圖的圓心角為n.∴,解得n=90°,如圖,AA′的長就是小蟲所走的最短路程,∵∠O=90°,OA′=OA=6,∴AA′=.故答案為:6.【考點】本題考查了圓錐的計算,考查圓錐側(cè)面展開圖中兩點間距離的求法;把立體幾何轉(zhuǎn)化為平面幾何來求是解決本題的突破點.4、【解析】【分析】連接CE,如圖,利用平行線的性質(zhì)得∠COE=∠EOB=90°,再利用勾股定理計算出OE=,利用余弦的定義得到∠OCE=60°,然后根據(jù)扇形面積公式,利用S陰影部分=S扇形BCE?S△OCE?S扇形BOD進行計算即可.【詳解】解:連接CE,如圖,∵AC⊥BC,∴∠ACB=90°,∵AC∥OE,∴∠COE=∠EOB=90°,∵OC=1,CE=2,∴OE=,cos∠OCE=,∴∠OCE=60°,∴S陰影部分=S扇形BCE?S△OCE?S扇形BOD=,故答案為.【考點】本題考查了扇形面積的計算:求陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.5、.【解析】【分析】以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標(biāo)系,設(shè)拋物線的表達式為y=ax2+1,因為△CDE是等腰直角三角形,DE=2,得點E的坐標(biāo)為(1,2),可得拋物線的表達式為y=x2+1,把當(dāng)y代入拋物線表達式,求得MH的長,再在Rt△FHM中,用勾股定理建立方程,求得所在的圓的半徑.【詳解】如圖,以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標(biāo)系,設(shè)所在的圓的圓心為P,半徑為r,過F作y軸的垂線交y軸于H,設(shè)拋物線的表達式為y=ax2+1.∵△CDE是等腰直角三角形,DE=2,∴點E的坐標(biāo)為(1,2),代入拋物線的表達式,得:2=a+1,a=1,∴拋物線的表達式為y=x2+1,當(dāng)y時,即,解得:,∴FH.∵∠FHM=90°,DE與所在的圓相切,∴,解得:,∴所在的圓的半徑為.故答案為.【考點】本題考查了圓的切線的性質(zhì),待定系數(shù)法求拋物線的表達式,垂徑定理.解題的關(guān)鍵是建立合適的平面直角坐標(biāo)系得出拋物線的表達式.三、解答題1、詳見解析.【解析】【詳解】試題分析:根據(jù)弧相等,則對應(yīng)的弦相等從而證明AB=AC,則△ABC易證是等邊三角形,然后根據(jù)同圓中弦相等,則對應(yīng)的圓心角相等即可證得.試題解析:證明:∵,∴AB=AC,△ABC為等腰三角形(相等的弧所對的弦相等)∵∠ACB=60°∴△ABC為等邊三角形,AB=BC=CA∴∠AOB=∠BOC=∠COA(相等的弦所對的圓心角相等)2、(1)圖(1)中陰影部分的面積為4平方厘米;(2)陰影部分面積為平方厘米.【解析】【分析】(1)由圖可知,圖(1)中右邊正方形中的陰影部分的面積等于左邊正方形中的空白部分的面積,通過割補法可得陰影部分的面積為一個正方形的面積,計算即可得解;(2)陰影部分的面積=梯形ABCG的面積+扇形GCE的面積-三角形ABE的面積,據(jù)此解答即可.【詳解】解:(1)由圖可知,圖(1)中右邊正方形中的陰影部分的面積等于左邊正方形中的空白部分的面積,∴S陰影=2×2=4(平方厘米);(2)如圖,S陰影=S梯形ABCG+S扇形GCE-S△ABE==25π(平方厘米).【考點】本題考查了扇形的面積,梯形的面積,三角形的面積,正方形的面積等知識.解題的關(guān)鍵是把陰影部分分成常見的平面圖形的和與差,進一步求得面積.3、見解析【解析】【分析】證法一,在射線EA上截取,連接OD,OE,OF,OG,因為,所以,所以,,由圓的內(nèi)接四邊形性質(zhì)得,由AD,DC是半圓O的切線得,,,即,所以,同理,即可得出結(jié)論.證法二,在BO上截取,連接FM,OF.過點O作,交FM的延長線于點N,連接OE,OD,易證,,,所以.由圓的內(nèi)接四邊形性質(zhì)得,,所以.因為,所以,得,,所以,同理得,即可得出結(jié)論.【詳解】證法一如圖所示,與AD相切于點E,與BC相切于點F,在射線EA上截取,連接OD,OE,OF,OG,則易證.,.四邊形ABCD內(nèi)接于圓,.AD,DC是半圓O的切線,,,,,,即,同理,.證法二如圖所示,與AD相切于點E,與BC相切于點F,在BO上截取,連接FM,OF.過點O作,交FM的延長線于點N,連接OE,OD.,.,,,,.,,.AD,DC是半圓O的切線,.四邊形ABCD內(nèi)接于圓,,,.,,,,,同理,.【考點】本題主要考查了圓的內(nèi)接四邊形性質(zhì)、切線的性質(zhì),解題的關(guān)鍵是理清題意,正確作出輔助線.4、(1)C(5,4),yx2x+4;(2)AE是⊙C的切線,理由見解析;(3).【解析】【分析】(1)如圖1,連接CD,CB,過點C作于M.設(shè)⊙C的半徑為r.在Rt△BCM中,利用勾股定理求出半徑,可得點C的坐標(biāo),根據(jù)函數(shù)的對稱性,得,用待定系數(shù)法即可求解.(2)結(jié)論:AE是OC的切線.連接AC,CE,由拋物線的解析式推出點E的坐標(biāo),求出AC,AE,CE,利用勾股定理的逆定理證明即可解決問題.(3)由四邊形EAMN周長,可得當(dāng)有最小值時,四邊形周長有最小值,即當(dāng)點M在線段上時,的最小值為,即可求解.(1)解:(1)如圖,連接CD,CB,過點C作CM⊥AB于M.設(shè)⊙C的半徑為r,∵與y軸相切于點D(0,4),∴CD⊥OD,∵∠CDO=∠CMO=∠DOM=90°,∴四邊形ODCM是矩形,∴CM=OD=4,CD=OM=r,∵B(8,0),∴OB=8,∴BM=8﹣r,在Rt△CMB中,∵BC2=CM2+BM2,∴r2=42+(8﹣r)2,解得r=5,∴圓心C(5,4),∴拋物線的對稱軸為x=5,又∵點B(8,0),∴點A(2,0),則拋物線的表達式為y=a(x﹣2)(x﹣8),將點D的坐標(biāo)代入上式得:4=a×(0﹣2)×(0﹣8),解得a,故拋物線的表達式為y(x﹣2)(x﹣8)x2x+4.(2)解:結(jié)論:AE是⊙C的切線.理由如下:連接AC,CE.當(dāng)x=5時,y,∴頂點E(5,),∵AE,CE=4,AC=5,∴EC2,AE2+AC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論