重難點解析貴州省赤水市中考數(shù)學(xué)真題分類(平行線的證明)匯編專項練習(xí)試題(含答案解析版)_第1頁
重難點解析貴州省赤水市中考數(shù)學(xué)真題分類(平行線的證明)匯編專項練習(xí)試題(含答案解析版)_第2頁
重難點解析貴州省赤水市中考數(shù)學(xué)真題分類(平行線的證明)匯編專項練習(xí)試題(含答案解析版)_第3頁
重難點解析貴州省赤水市中考數(shù)學(xué)真題分類(平行線的證明)匯編專項練習(xí)試題(含答案解析版)_第4頁
重難點解析貴州省赤水市中考數(shù)學(xué)真題分類(平行線的證明)匯編專項練習(xí)試題(含答案解析版)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

貴州省赤水市中考數(shù)學(xué)真題分類(平行線的證明)匯編專項練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,∠ABD、∠ACD的角平分線交于點P,若∠A=50°,∠D=10°,則∠P的度數(shù)為(

)A.15° B.20° C.25° D.30°2、給定下列條件,不能判定三角形為直角三角形的是(

)A.∠A:∠B:∠C=1∶2∶3 B.∠A+∠B=∠CC. D.∠A=2∠B=3∠C3、將一副三角板()按如圖所示方式擺放,使得,則等于()A. B. C. D.4、如圖,∠B+∠C+∠D+∠E―∠A等于()A.180° B.240° C.300° D.360°5、如圖,已知△ABC≌△DCB,∠A=75°,∠DBC=40°,則∠DCB的度數(shù)為(

)A.75° B.65°C.40° D.30°6、如圖,點E在射線AB上,要ADBC,只需(

)A.∠A=∠CBE B.∠A=∠C C.∠C=∠CBE D.∠A+∠D=180°7、將一副學(xué)生用的三角板(一個銳角為30°的直角三角形,一個銳角為45°的直角三角形)如圖疊放,則下列4個結(jié)論中正確的個數(shù)有(

)①∠AOC+∠BOD=90°;②∠AOC=∠BOD;③∠AOC-∠CEA=15°;④如果OB平分∠DOC,則OC平分∠AOBA.0 B.1 C.2 D.38、如圖,在△ABC中,點D在AB上,點E在AC上,DE∥BC.若∠A=62°,∠AED=54°,則∠B的大小為()A.54° B.62° C.64° D.74°第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、說明命題“若x>-4,則x2>16”是假命題的一個反例可以是_______.2、如圖,在△ABC中,AD平分∠BAC,如果∠B=80°,∠C=40°,那么∠ADC的度數(shù)等于_____.3、如圖,在四邊形ABCD中,∠BCD=50°,∠B=∠D=90°,在BC、CD上分別取一點M、N,使△AMN的周長最小,則∠MAN=_____°.4、如圖,點O是△ABC的三條角平分線的交點,連結(jié)AO并延長交BC于點D,BM、CM分別平分∠ABC和∠ACB的外角,直線MC和直線BO交于點N,OH⊥BC于點H,有下列結(jié)論:①∠BOC+∠BMC=180°;②∠N=∠DOH;③∠BOD=∠COH;④若∠CBA=∠CAB,則MN∥AB;其中正確的有_____.(填序號)5、如圖,給出下列條件:①;②;③;④;⑤.其中,一定能判定∥的條件有_____________(填寫所有正確的序號).6、把“對頂角相等”改寫成“如果…那么…”的形式____________________________________________.7、如圖,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,則∠B=______度.三、解答題(7小題,每小題10分,共計70分)1、如圖:∠1+∠2=180°,∠C=∠D,則∠A=∠F嗎?請說明理由.2、如圖,在△ABC中,D是BC邊上的一點,AB=DB,BE平分∠ABC,交AC邊于點E,連接DE.(1)求證:△ABE≌△DBE,(2)若∠A=100°,∠C=50°,求∠AEB的度數(shù).3、(1)如圖(a),BD平分,CD平分.試確定和的數(shù)量關(guān)系.(2)如圖(b),BE平分,CE平分外角.試確定和的數(shù)量關(guān)系.(3)如圖(c),BF平分外角,CF平分外角.試確定和的數(shù)量關(guān)系.4、如圖所示,AE為△ABC的角平分線,CD為△ABC的高,若∠B=30°,∠ACB為70°.(1)求∠CAF的度數(shù);(2)求∠AFC的度數(shù).5、如圖,在△中,,分別是邊,上的點,若△≌△≌△,求的度數(shù).6、已知:如圖,O是內(nèi)一點,且OB、OC分別平分、.(1)若,求;(2)若,求;(3)若,利用第(2)題的結(jié)論求.7、點E在射線DA上,點F、G為射線BC.上兩個動點,滿足∠DBF=∠DEF,∠BDG=∠BGD,DG平分∠BDE.(1)如圖,當(dāng)點G在F右側(cè)時,求證:;(2)如圖,當(dāng)點G在BF左側(cè)時,求證:;(3)如圖,在(2)的條件下,P為BD延長線上一點,DM平分∠BDG,交BC于點M,DN平分∠PDM,交EF于點N,連接NG,若DG⊥NG,,求∠B的度數(shù).-參考答案-一、單選題1、B【解析】【分析】利用三角形外角的性質(zhì),得到∠ACD與∠ABD的關(guān)系,然后用角平分線的性質(zhì)得到角相等的關(guān)系,代入計算即可得到答案.【詳解】解:延長DC,與AB交于點E.∵∠ACD是△ACE的外角,∠A=50°,∴∠ACD=∠A+∠AEC=50°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD-∠ABD=60°.設(shè)AC與BP相交于O,則∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=50°-(∠ACD-∠ABD)=20°.故選B.【考點】本題綜合考查角平分線的性質(zhì)、三角形外角的性質(zhì)、三角形內(nèi)角和等知識點.解題的關(guān)鍵是熟練的運用所學(xué)性質(zhì)去求解.2、D【解析】【分析】根據(jù)三角形的內(nèi)角和等于180°求出最大角,然后選擇即可.【詳解】解:A、最大角∠C=×180°=90°,是直角三角形,不符合題意;B、最大角∠C=180°÷2=90°,是直角三角形,不符合題意;C、設(shè)∠A=x,則∠B=2x,∠C=3x,所以,x+2x+3x=180°,解得x=30°,最大角∠C=3×30°=90°,是直角三角形,不符合題意;D、設(shè)∠A=x,則∠B=x,∠C=x,所以,,解得,是鈍角三角形,符合題意.故選:D.【考點】本題考查了三角形的內(nèi)角和定理,求出各選項中的最大角是解題的關(guān)鍵.3、A【解析】【分析】根據(jù)平行線的性質(zhì)和三角形外角的性質(zhì)進(jìn)行計算,即可得到答案.【詳解】解:,.,.故選.【考點】本題考查平行線的性質(zhì)和三角形外角的性質(zhì),解題的關(guān)鍵是掌握平行線的性質(zhì)和三角形外角的性質(zhì).4、A【解析】【分析】根據(jù)三角形的外角的性質(zhì),得∠B+∠C=∠CGE=180°-∠AGF,∠D+∠E=∠DFG=180°-∠AFG,兩式相加再減去∠A,根據(jù)三角形的內(nèi)角和是180°可求解.【詳解】∵∠B+∠C=∠CGE=180°-∠AGF,∠D+∠E=∠DFG=180°-∠AFG,∴∠B+∠C+∠D+∠E-∠A=360°-(∠AGF+∠AFG+∠A),又∵∠AGF+∠AFG+∠A=180°,∴∠B+∠C+∠D+∠E-∠A=180°,故選A.【考點】本題考查了三角形外角的性質(zhì)、三角形內(nèi)角和定理,熟練掌握三角形外角的性質(zhì)以及三角形內(nèi)角和等于180度是解題的關(guān)鍵.5、B【解析】【分析】直接利用全等三角形的性質(zhì)得出對應(yīng)角相等進(jìn)而求出答案.【詳解】解:∵△ABC≌△DCB,∴∠D=∠A=75°,∠ACB=∠DBC=40°,∴∠DCB=180°-75°-40°=65°,故選:B.【考點】此題主要考查了全等三角形的性質(zhì),正確得出對應(yīng)角的度數(shù)是解題關(guān)鍵.6、A【解析】【分析】根據(jù)平行線的判定定理:同位角相等兩直線平行,內(nèi)錯角相等兩直線平行,同旁內(nèi)角互補兩直線平行,逐項進(jìn)行判斷,即可求解.【詳解】解:∵∠A=∠CBE,∴ADBC.故選:A.【考點】本題考查了平行線的判定,解題的關(guān)鍵是掌握平行線的判定方法.7、D【解析】【分析】根據(jù)同角的余角相等可得∠AOC=∠BOD;根據(jù)三角形的內(nèi)角和即可得出∠AOC-∠CEA=15°;根據(jù)角平分線的定義可判定OC平分∠AOB.【詳解】解:∵∠DOC=∠AOB=90°,∴∠DOC-∠BOC=∠AOB-∠COB,即∠BOD=∠AOC,故②正確;如圖,AB與OC交于點P,∵∠CPE=∠APO,∠C=45°,∠A=30°,∠CEA+∠CPE+∠C=∠AOC+∠APO+∠A=180°,∴∠AOC-∠CEA=15°.故③正確;如果OB平分∠DOC,則∠DOB=∠BOC=45°,則∠AOC=∠BOC=45°,故OC平分∠AOB,故④正確;由②知:∠AOC=∠BOD,故當(dāng)∠AOC=∠BOD=45°時,∠AOC+∠BOD=90°成立,否則不成立,故①不正確;綜上,②③④正確,共3個,故選:D.【考點】本題考查了余角以及三角形內(nèi)角和定理,角平分線的定義,熟知余角的性質(zhì)以及三角形內(nèi)角和是180°是解答此題的關(guān)鍵.8、C【解析】【詳解】解:∵DE∥BC,∴∠C=∠AED=54°,∵∠A=62°,∴∠B=180°﹣∠A﹣∠C=64°,故選C.點睛:本題考查了平行線的性質(zhì),三角形的內(nèi)角和,熟練掌握三角形的內(nèi)角和是解題的關(guān)鍵.二、填空題1、x=-3,答案不唯一【解析】【分析】當(dāng)x=-3時,滿足x>-4,但不能得到x2>16,于是x=-3可作為說明命題“x>-4,則x2>16”是假命題的一個反例.【詳解】說明命題“x>-4,則x2>16”是假命題的一個反例可以是x=-3.故答案為-3.【考點】本題考查了命題與定理:判斷一件事情的語句,叫做命題.許多命題都是由題設(shè)和結(jié)論兩部分組成,題設(shè)是已知事項,結(jié)論是由已知事項推出的事項,一個命題可以寫成“如果…那么…”形式.有些命題的正確性是用推理證實的,這樣的真命題叫做定理.任何一個命題非真即假.要說明一個命題的正確性,一般需要推理、論證,而判斷一個命題是假命題,只需舉出一個反例即可.2、110°##110度【解析】【分析】由三角形的內(nèi)角和可求得∠BAC=60°,再由角平分線的定義得∠BAD=30°,利用三角形的外角性質(zhì)即可求∠ADC的度數(shù).【詳解】解:∵∠B=80°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AD平分∠BAC,∴∠BAD=∠BAC=30°,∴∠ADC=∠B+∠BAD=110°.故答案為:110°.【考點】本題主要考查三角形的外角性質(zhì),三角形的內(nèi)角和定理,角平分線的定義,解答的關(guān)鍵是對相應(yīng)的知識的掌握.3、80【解析】【分析】作點A關(guān)于BC、CD的對稱點A1、A2,根據(jù)軸對稱確定最短路線問題,連接A1、A2分別交BC、DC于點M、N,利用三角形的內(nèi)角和定理列式求出∠A1+∠A2,再根據(jù)軸對稱的性質(zhì)和角的和差關(guān)系即可得∠MAN.【詳解】如圖,作點A關(guān)于BC、CD的對稱點A1、A2,連接A1、A2分別交BC、DC于點M、N,連接AM、AN,則此時△AMN的周長最小,∵∠BCD=50°,∠B=∠D=90°,∴∠BAD=360°﹣90°﹣90°﹣50°=130°,∴∠A1+∠A2=180°﹣130°=50°,∵點A關(guān)于BC、CD的對稱點為A1、A2,∴NA=NA2,MA=MA1,∴∠A2=∠NAD,∠A1=∠MAB,∴∠NAD+∠MAB=∠A1+∠A2=50°,∴∠MAN=∠BAD﹣(∠NAD+∠MAB)=130°﹣50°=80°,故答案為:80.【考點】本題考查了軸對稱的最短路徑問題,利用軸對稱將三角形周長問題轉(zhuǎn)化為兩點間線段最短問題是解決本題的關(guān)鍵.4、①③④【解析】【分析】由平分可知:①∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,即∠OBM=90°,∠OCM=90°,可知∠BOC+∠BMC=180°;②利用外角定理,角平分線性質(zhì)進(jìn)行計算分析即可;③根據(jù)∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,可知∠BOD=∠COH;④若∠CBA=∠CAB,則∠1=∠2=∠BAC,由于∠N=∠BAC,可知∠1=∠N,即MN∥AB.【詳解】解:如圖所示,延長AC與E,∵點O是△ABC的三條角平分線的交點,BM、CM分別平分∠ABC和∠ACB的外角,∴∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,∴∠2+∠3=∠OBM=90°,∠6+∠7=∠OCM=90°,∵∠OBM+∠OCM+∠BOC+∠BMC=360°,∴∠BOC+∠BMC=180°,故①正確;∵BN平分∠ABC,CM平分∠BCE,∠N+∠2=∠7,∴∠N=∠7﹣∠2=∠BCE﹣∠ABC,∵∠BCE=∠ABC+∠BAC,∴∠N=∠BAC,∵∠ODH=∠BAD+∠ABC=∠BAC+∠ABC,OH⊥BC,∴∠DOH=90°﹣∠ODH=90°﹣∠BAC﹣∠ABC,∵∠ABC+∠BAC≠90°,∴90°﹣∠BAC﹣∠ABC≠∠BAC,∴∠N≠∠DOH,故②錯誤;∵∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,∴∠BOD=∠COH,故③正確;∵∠CBA=∠CAB,∴∠1=∠2=∠BAC,∵∠N=∠BAC,∴∠1=∠N,∴MN∥AB,故④正確,故答案為:①③④.【考點】本題主要考查的是三角形與角平分線的綜合運用,熟練掌握角平分線的性質(zhì)是解題的關(guān)鍵.5、①③④【解析】【分析】根據(jù)平行線的判定方法對各小題判斷即可解答.【詳解】①∵,∴∥(同旁內(nèi)角互補,兩直線平行),正確;②∵,∴∥,錯誤;③∵,∴∥(內(nèi)錯角相等,兩直線平行),正確;④∵,∴∥(同位角相等,兩直線平行),正確;⑤不能證明∥,錯誤,故答案為:①③④.【考點】本題考查了平行線的判定,熟練掌握平行線的判定方法是解答的關(guān)鍵.6、如果兩個角是對頂角,那么它們相等【解析】【分析】先找到命題的題設(shè)和結(jié)論,再寫成“如果…那么…”的形式.【詳解】解:∵原命題的條件是:“兩個角是對頂角”,結(jié)論是:“它們相等”,∴命題“對頂角相等”寫成“如果…那么…”的形式為:“如果兩個角是對頂角,那么它們相等”.故答案為:如果兩個角是對頂角,那么它們相等.【考點】本題考查了命題的條件和結(jié)論的敘述,注意確定一個命題的條件與結(jié)論的方法是首先把這個命題寫成:“如果…,那么…”的形式.7、120【解析】【分析】根基三角形全等的性質(zhì)得到∠C=∠C′=24°,再根據(jù)三角形的內(nèi)角和定理求出答案.【詳解】∵,∴∠C=∠C′=24°,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=120°,故答案為:120.【考點】此題考查三角形全等的性質(zhì)定理:全等三角形的對應(yīng)角相等,三角形的內(nèi)角和定理.三、解答題1、∠A=∠F,理由見解析【解析】【分析】∠1+∠2=180°,∠2=∠AGC,∠1+∠AGC=180°,BD∥CE,有∠C=∠ABD=∠D,得DF∥AC,進(jìn)而可說明∠A=∠F.【詳解】解:∠A=∠F,理由如下:∵∠1+∠2=180°,∠2=∠AGC∴∠1+∠AGC=180°∴BD∥CE∴∠C=∠ABD∵∠C=∠D∴∠D=∠ABD∴DF∥AC∴∠A=∠F.【考點】本題考查了對頂角,平行線的判定與性質(zhì).解題的關(guān)鍵在利用角的數(shù)量關(guān)系證明直線平行.2、(1)見解析(2)∠AEB=65°【解析】【分析】(1)由角平分線可得∠ABE=∠DBE,再證△ABE≌△DBE即可;(2)根據(jù)三角形內(nèi)角和求出∠ABC=30°,再根據(jù)角平分線求出∠ABE=15°,根據(jù)三角形內(nèi)角和可求.(1)證明:∵BE平分∠ABC,∴∠ABE=∠DBE,在△ABE和△DBE中,,∴△ABE≌△DBE(SAS),(2)解:∵∠A=100°,∠C=50°,∴∠ABC=30°,∵BE平分∠ABC,∴∠ABE=∠DBE=∠ABC=15°,在△ABE中,∠AEB=180°﹣∠A﹣∠ABE=180°﹣100°﹣15°=65°.【考點】本題考查了全等三角形的判定、角平分線的定義以及三角形內(nèi)角和,掌握三角形全等的判定和運用三角形內(nèi)角和求角度是解題的關(guān)鍵.3、(1);(2);(3)【解析】【分析】(1)根據(jù)三角形的內(nèi)角和定理以及角平分線的定義即可確定和的數(shù)量關(guān)系;(2)根據(jù)三角形的外角性質(zhì)以及角平分線的定義可得,進(jìn)而可得和的數(shù)量關(guān)系;(3)根據(jù)三角形的內(nèi)角和定理可得,,結(jié)合角平分線的定義,根據(jù)即可確定和的數(shù)量關(guān)系.【詳解】(1)在中,.在中,.∵,,∴;(2)在中,.在中,.∵,,∴.(3)在中,.在中,.∵,.,,∴.【考點】本題考查了三角形的內(nèi)角和定理,三角形的外角性質(zhì),角平分線的定義,熟練掌握以上知識是解題的關(guān)鍵.4、(1)40°;(2)130°【解析】【分析】(1)依據(jù)三角形內(nèi)角和定理,即可得到∠BAC的度數(shù),再根據(jù)角平分線的定義,即可得到∠CAF的度數(shù);(2)依據(jù)三角形內(nèi)角和定理,即可得到∠ACF的度數(shù),再根據(jù)三角形內(nèi)角和定理,即可得出∠AFC的度數(shù).【詳解】解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣30°﹣70°=80°,又∵AE平分∠BAC,∴∠CAF=∠CAB=×80°=40°;(2)∵CD為△ABC的高,∠CAD=80°,∴Rt△ACD中,∠ACF=90°﹣80°=10°,∴∠AFC=180°﹣∠ACF﹣∠CAF=180°﹣10°﹣40°=130°.【考點】本題考查了三角形的外角性質(zhì)、三角形的角平分線、中線和高、三角形內(nèi)角和定理,熟練掌握性質(zhì),靈活運用定理是解題的關(guān)鍵.5、30°【解析】【分析】根據(jù)全等三角形的性質(zhì)及三角形內(nèi)角和定理,即可求得.【詳解】解:∵△≌△≌△,∴,,又∵,∴,∴,

∵,∴,∴.【考點】本題考

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論