重難點解析北師大版9年級數(shù)學(xué)上冊期中測試卷【奪冠】附答案詳解_第1頁
重難點解析北師大版9年級數(shù)學(xué)上冊期中測試卷【奪冠】附答案詳解_第2頁
重難點解析北師大版9年級數(shù)學(xué)上冊期中測試卷【奪冠】附答案詳解_第3頁
重難點解析北師大版9年級數(shù)學(xué)上冊期中測試卷【奪冠】附答案詳解_第4頁
重難點解析北師大版9年級數(shù)學(xué)上冊期中測試卷【奪冠】附答案詳解_第5頁
已閱讀5頁,還剩35頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

北師大版9年級數(shù)學(xué)上冊期中測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計14分)1、已知是方程的一個解,則的值為(

)A.10 B.-10 C.2 D.-402、如圖,將圖1中的菱形紙片沿對角線剪成4個直角三角形,拼成如圖2的四邊形(相鄰紙片之間不重疊,無縫隙).若四邊形的面積為13,中間空白處的四邊形的面積為1,直角三角形的兩條直角邊分別為和,則(

)A.12 B.13 C.24 D.253、如圖,點E、F、G、H分別是四邊形ABCD的邊AB、BC、CD、DA的中點.則下列說法:①若,則四邊形EFGH為矩形;②若,則四邊形EFGH為菱形;③若AC與BD互相垂直且相等,則四邊形EFGH是正方形;④若四邊形EFGH是平行四邊形,則AC與BD互相平分.其中正確的個數(shù)是(

)A.1 B.2 C.3 D.44、妙妙上學(xué)經(jīng)過兩個路口,如果每個路口可直接通過和需等待的可能性相等,那么妙妙上學(xué)時在這兩個路口都直接通過的概率是(

)A. B. C. D.5、如圖,已知菱形ABCD的兩條對角線分別為6和8,M、N分別是邊BC、CD的中點,P是對角線BD上一點,則PM+PN的最小值是()A.5 B.10 C.6 D.86、如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC?CF=2HE.其中正確的結(jié)論有(

)A.1個 B.2個 C.3個 D.4個7、已知四邊形ABCD是平行四邊形,下列結(jié)論:①當AB=BC時,它是菱形;②當AC⊥BD時,它是菱形;③當∠ABC=90°時,它是矩形;④當AC=BD時,它是正方形,其中錯誤的有(

)A.1個 B.2個 C.3個 D.4個二、多選題(3小題,每小題2分,共計6分)1、如圖,正方形的邊長為8,點,分別在邊,上,將正方形沿折疊,使點落在邊上的處,點落在處,交于.下列結(jié)論正確的是(

)A.當為中點時,B.當時,C.當(點不與、重合)在上移動時,周長隨著位置變化而變化D.連接,則2、下列命題中不是真命題的是(

)A.兩邊相等的平行四邊形是菱形B.一組對邊平行一組對邊相等的四邊形是平行四邊形C.兩條對角線相等的平行四邊形是矩形D.對角線互相垂直且相等的四邊形是正方形3、如果,是一元二次方程的兩個根,那么的值是(

),的值是(

)A. B.4 C. D.2第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計20分)1、如圖,在Rt△ABC中,∠C=90°,AC=8cm,BC=2cm,點P在邊AC上,以2cm/s的速度從點A向點C移動,點Q在邊CB上,以1cm/s的速度從點C向點B移動.點P、Q同時出發(fā),且當一點移動到終點時,另一點也隨之停止,連接PQ,當△PQC的面積為3cm2時,P、Q運動的時間是_____秒.2、關(guān)于的方程有兩個不相等的實數(shù)根,則的取值范圍是________.3、如圖,在Rt△ABC中,∠ACB=90°,,點D為AB的中點,點P在AC上,且CP=1,將CP繞點C在平面內(nèi)旋轉(zhuǎn),點P的對應(yīng)點為點Q,連接AQ,DQ.當∠ADQ=90°時,AQ的長為______.4、如圖,直角三角形ABC中,AC=1,BC=2,P為斜邊AB上一動點.PE⊥BC,PF⊥CA,則線段EF長的最小值為_________.5、如圖,將正方形OEFG放在平面直角坐標系中,O是坐標原點,點E的坐標為(2,3),則點F的坐標為_____.6、一個小球在如圖所示的方格地磚上任意滾動,并隨機停留在某塊地磚上.每塊地磚的大小、質(zhì)地完全相同,那么該小球停留在黑色區(qū)域的概率是___________.7、如圖,在矩形ABCD中,AB=6,BC=8,點E、F分別是邊AB、BC上的動點,且EF=4,點G是EF的中點,AG、CG,則四邊形AGCD面積的最小值為_______.8、已知方程的一根為,則方程的另一根為_______.9、已知菱形的邊長為,兩條對角線的長度的比為3:4,則兩條對角線的長度分別是_____________.10、如圖,在菱形中,,點E在邊上,將沿直線翻折180°,得到,點B的對應(yīng)點是點若,,則的長是__________.四、解答題(6小題,每小題10分,共計60分)1、如圖,已知正方形點在邊上,以為邊在左側(cè)作正方形;以為鄰邊作平行四邊形連接.(1)判斷和的數(shù)量及位置關(guān)系,并說明理由;(2)將繞點順時針旋轉(zhuǎn),在旋轉(zhuǎn)過程中,和的數(shù)量及位置關(guān)系是否發(fā)生變化?請說明理由.2、如圖,BF平行于正方形ADCD的對角線AC,點E在BF上,且AE=AC,CF∥AE,求∠BCF.3、如圖,是的中線,,且,連接,.(1)求證:;(2)當滿足條件__________時,四邊形是矩形.4、如圖,AD是△ABC的中線,過點A、B分別作BC、AD的平行線,兩平行線相交于點E.(1)求證:AE=CD;(2)當AB、AC滿足什么條件時,①四邊形AEBD是矩形?請說明理由;②四邊形AEBD是菱形?請說明理由;③四邊形AEBD是正方形?請說明理由.5、已知關(guān)于x的方程x2+(m﹣2)x﹣2m=0.(1)求證:不論m取何值,此方程總有實數(shù)根;(2)若m為整數(shù),且方程的一個根小于2,請寫出一個滿足條件的m的值.6、用適當?shù)姆椒ń夥匠蹋?1).(2).-參考答案-一、單選題1、B【解析】【分析】將a代入方程得到,再將其整體代入所求代數(shù)式即可得解.【詳解】∵a是方程的一個解,∴有,即,,∴,故選:B.【考點】本題考查了一元二次方程的解的定義,此類題的特點是利用方程的解的定義找到相等關(guān)系,再將其整體代入所求代數(shù)式,即可快速作答,盲目解一元二次方程求a值再代入計算,此方法耗時費力不可?。?、D【解析】【分析】根據(jù)菱形的性質(zhì)可得對角線互相垂直平分,進而可得4個直角三角形全等,結(jié)合已知條件和勾股定理求得,進而根據(jù)面積差以及三角形面積公式求得,最后根據(jù)完全平方公式即可求得.【詳解】菱形的對角線互相垂直平分,個直角三角形全等;,,,四邊形是正方形,又正方形的面積為13,正方形的邊長為,根據(jù)勾股定理,則,中間空白處的四邊形的面積為1,個直角三角形的面積為,,,,.故選D.【考點】本題考查了正方形的性質(zhì)與判定,菱形的性質(zhì),勾股定理,完全平方公式,求得是解題的關(guān)鍵.3、A【解析】【分析】先根據(jù)三角形中位線定理證明四邊形EFGH是平行四邊形,然后根據(jù)菱形,矩形,正方形的判定進行逐一判斷即可.【詳解】解:∵點E、F、G、H分別是四邊形ABCD的邊AB、BC、CD、DA的中點,∴EH是△ABD的中位線,∴,,同理,∴EH=GF,GH=EF,∴四邊形EFGH是平行四邊形,①若AC=BD,則EH=GF=GH=EF,則四邊形EFGH是菱形,故①錯誤;②若AC⊥BD,則EF⊥EH,∴平行四邊形EFGH是矩形,故②錯誤;③若AC與BD互相垂直且相等,結(jié)合①②的判斷可知四邊形EFGH是正方形,故③正確;④若四邊形EFGH是平行四邊形,并不能推出AC與BD互相平分,故④錯誤,故選A.【考點】本題主要考查了中點四邊形,三角形中位線定理,熟知中點四邊形的知識是解題的關(guān)鍵.4、A【解析】【分析】根據(jù)題意畫出樹形圖,求出在這兩個路口都直接通過的概率為即可求解.【詳解】解:由題意畫樹形圖得,由樹形圖得共有4種等可能性,其中在這兩個路口都直接通過的概率是P=.故選:A【考點】本題考查了列表或畫樹形圖求概率,理解題意,正確列表或畫樹形圖得到所有等可能的結(jié)果是解題關(guān)鍵.5、A【解析】【分析】作M關(guān)于BD的對稱點Q,連接NQ,交BD于P,連接MP,此時MP+NP的值最小,連接AC,求出CP、BP,根據(jù)勾股定理求出BC長,證出MP+NP=QN=BC,即可得出答案.【詳解】解:作M關(guān)于BD的對稱點Q,連接NQ,交BD于P,連接MP,此時MP+NP的值最小,連接AC,則P是AC中點,∵四邊形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M為BC中點,∴Q為AB中點,∵N為CD中點,四邊形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四邊形BQNC是平行四邊形,∴PQ∥AD,而點Q是AB的中點,故PQ是△ABD的中位線,即點P是BD的中點,同理可得,PM是△ABC的中位線,故點P是AC的中點,即點P是菱形ABCD對角線的交點,∵四邊形ABCD是菱形,則△BPC為直角三角形,,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故選:A.【考點】本題考查了軸對稱-最短路線問題,平行四邊形的性質(zhì)和判定,菱形的性質(zhì),勾股定理的應(yīng)用,解此題的關(guān)鍵是能根據(jù)軸對稱找出P的位置.6、D【解析】【分析】①根據(jù)角平分線的定義可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得AE=AB,從而得到AE=AD,然后利用“角角邊”證明△ABE和△AHD全等,根據(jù)全等三角形對應(yīng)邊相等可得BE=DH,再根據(jù)等腰三角形兩底角相等求出∠ADE=∠AED=67.5°,根據(jù)平角等于180°求出∠CED=67.5°,從而判斷出①正確;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根據(jù)等角對等邊可得OE=OD=OH,判斷出②正確;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角邊角”證明△BEH和△HDF全等,根據(jù)全等三角形對應(yīng)邊相等可得BH=HF,判斷出③正確;④根據(jù)全等三角形對應(yīng)邊相等可得DF=HE,然后根據(jù)HE=AE-AH=BC-CD,BC-CF=BC-(CD-DF)=2HE,判斷出④正確.【詳解】解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°-45°)=67.5°,∴∠CED=180°-45°-67.5°=67.5°,∴∠AED=∠CED,故①正確;∵AB=AH,∵∠AHB=(180°-45°)=67.5°,∠OHE=∠AHB(對頂角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°-67.5°=22.5°,∠ODH=67.5°-45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正確;∵∠EBH=90°-67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正確;∵HE=AE-AH=BC-CD,∴BC-CF=BC-(CD-DF)=BC-(CD-HE)=(BC-CD)+HE=HE+HE=2HE.故④正確;綜上所述,結(jié)論正確的是①②③④共4個.故選:D.【考點】本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),角平分線的定義,等腰三角形的判定與性質(zhì),熟記各性質(zhì)并仔細分析題目條件,根據(jù)相等的度數(shù)求出相等的角,從而得到三角形全等的條件或判斷出等腰三角形是解題的關(guān)鍵,也是本題的難點.7、A【解析】【分析】根據(jù)矩形、菱形、正方形的判定可以判斷題目中的各個小題的結(jié)論是否正確,從而可以解答本題.【詳解】解:四邊形是平行四邊形,A、當時,它是菱形,選項不符合題意,B、當時,它是菱形,選項不符合題意,C、當時,它是矩形,選項不符合題意,D、當時,它是矩形,不一定是正方形,選項符合題意,故選:.【考點】本題考查正方形、菱形、矩形的判定,解答本題的關(guān)鍵是熟練掌握矩形、菱形、正方形的判定定理.二、多選題1、ABD【解析】【分析】當為CD中點時,設(shè)則,由勾股定理列方程求解,進一步求得的值,進而可判斷A的正誤;當三邊之比為3:4:5時,設(shè),,,由可求a的值,進一步求得的值,進而可判斷B的正誤;過點A作,垂足為H,連接,AG,先證,可得,,再證,可得,由此證得周長=16,進而可判斷C的正誤;過點E作EM⊥BC,垂足為M,連接交EM,EF于點N,Q,證明,進而可判斷D的正誤.【詳解】:∵為CD中點,正方形ABCD的邊長為8,∴,由折疊的性質(zhì),設(shè)則,在中,由勾股定理得,即42+(8﹣x)2=x2,解得x=5,∴AE=5,DE=3,∴,故A正確;當三邊之比為3:4:5時,設(shè),,,則,∵,∴,解得:,∴,,故B正確;過點A作,垂足為H,連接,AG,則,由折疊的性質(zhì)可知,∴,∵,∴,∵,∴,∴,在和中,∴,∴,∵,∴,在與中,,∴,∴,∴周長,∴當在CD上移動時,周長不變,故C錯誤;如圖,過點E作EM⊥BC,垂足為M,連接交EM,EF于點N,Q,∴,,∴,由翻折可知:EF垂直平分,∴,∴,∴,在和中,,,∴,故D正確.故選:ABD.【考點】本題考查了正方形的性質(zhì),折疊的性質(zhì),勾股定理,全等三角形的判定與性質(zhì)等知識.解題的關(guān)鍵在于對知識的熟練掌握與靈活運用.2、ABD【解析】【分析】利用平行四邊形、矩形、菱形及正方形的判定方法分別判斷即可.【詳解】A選項:有一組鄰邊相等的平行四邊形是菱形,故原命題錯誤,是假命題,符合題意;B選項:一組對邊平行且相等的四邊形是平行四邊形,故原命題錯誤,是假命題,符合題意;C選項:兩條對角線相等的平行四邊形是矩形,故原命題正確,是真命題,不符合題意;D選項:兩條對角線互相垂直且相等的平行四邊形是正方形,故原命題錯誤,是假命題,符合題意.故選:ABD.【考點】考查了平行四邊形、菱形、矩形和正方形的判定,解題關(guān)鍵是熟練掌握特殊四邊形的判定方法.3、AB【解析】【分析】根據(jù)根與系數(shù)的關(guān)系得到,再根據(jù)一元二次方程的根的定義可得,由此即可得出答案.【詳解】解:、是一元二次方程的兩個根,,∵是一元二次方程的根,∴,∴,∴,,故選:AB.【考點】本題考查的是一元二次方程的根與系數(shù)的關(guān)系以及方程的根的定義,即,是一元二次方程的兩根時,,熟練掌握一元二次方程根與系數(shù)的關(guān)系是解決本題的關(guān)鍵.三、填空題1、1【解析】【分析】設(shè)P、Q運動的時間是秒,根據(jù)已知條件得到cm,cm,則cm,根據(jù)三角形面積公式列出方程,解方程即可求解.【詳解】解:設(shè)P、Q運動的時間是秒,則cm,cm,cm∵△PQC的面積為3cm2,∴,即,解得或(不合題意,舍去),∴當△PQC的面積為3cm2時,P、Q運動的時間是1秒.故答案為:1【考點】本題考查了一元二次方程應(yīng)用——動點問題,三角形的面積,正確的理解題意是解題的關(guān)鍵.2、且【解析】【分析】若一元二次方程有兩個不相等的實數(shù)根,則△=b2-4ac>0,建立關(guān)于k的不等式,求得k的取值范圍,還要使二次項系數(shù)不為0.【詳解】∵方程有兩個不相等的實數(shù)根,∴解得:,又二次項系數(shù)故答案為且【考點】考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.3、或##或【解析】【分析】連接,根據(jù)題意可得,當∠ADQ=90°時,分點在線段上和的延長線上,且,勾股定理求得即可.【詳解】如圖,連接,在Rt△ABC中,∠ACB=90°,,,,,根據(jù)題意可得,當∠ADQ=90°時,點在上,且,,如圖,在中,,在中,故答案為:或.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),勾股定理,直角三角形斜邊上中線的性質(zhì),確定點的位置是解題的關(guān)鍵.4、.【解析】【分析】先連接PC,判定四邊形ECFP是矩形,得到EF=PC,再根據(jù)當PC最小時,EF也最小,根據(jù)垂線段最短,可得當CP⊥AB時,PC最小,最后根據(jù)面積法,求得CP的長即可得到線段EF長的最小值.【詳解】解:連接PC,∵PE⊥BC,PF⊥CA,∴∠PEC=∠PFC=∠C=90°,∴四邊形ECFP是矩形,∴EF=PC,∴當PC最小時,EF也最小,∵垂線段最短,∴當CP⊥AB時,PC最小,∵AC=1,BC=2,∴AB=,又∵當CP⊥AB時,×AC×BC=×AB×CP,∴.∴線段EF長的最小值為.故答案為:.【考點】本題主要考查了矩形的判定與性質(zhì),勾股定理以及垂線段最短的綜合應(yīng)用,解決問題的關(guān)鍵是運用矩形對角線相等的性質(zhì)進行求解.5、(﹣1,5)【解析】【詳解】【分析】結(jié)合全等三角形的性質(zhì)可以求得點G的坐標,再由正方形的中心對稱的性質(zhì)求得點F的坐標.【詳解】如圖,過點E作x軸的垂線EH,垂足為H.過點G作x軸的垂線GM,垂足為M,連接GE、FO交于點O′,∵四邊形OEFG是正方形,∴OG=EO,∠GOM+∠EOH=90°∠GOM=∠OEH,∠OGM=∠EOH,在△OGM與△EOH中,,∴△OGM≌△EOH(ASA),∴GM=OH=2,OM=EH=3,∴G(﹣3,2),∴O′(﹣,),∵點F與點O關(guān)于點O′對稱,∴點F的坐標為(﹣1,5),故答案是:(﹣1,5).【考點】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、中點坐標公式等,正確添加輔助線以及熟練掌握和運用相關(guān)內(nèi)容是解題的關(guān)鍵.6、【解析】【分析】先求出黑色方磚在整個地面中所占的比值,再根據(jù)其比值即可得出結(jié)論.【詳解】解:∵由圖可知,黑色方磚6塊,共有16塊方磚,∴黑色方磚在整個區(qū)域中所占的比值=,∴小球停在黑色區(qū)域的概率是;故答案為:【考點】本題考查的是幾何概率,用到的知識點為:幾何概率=相應(yīng)的面積與總面積之比.7、38【解析】【分析】根據(jù)題目要求,要使四邊形AGCD的面積最小,因為的面積固定,只需使的面積最小即可,即的高最小即可,又在中,,則BG=2,高的最小值為點B到AC的距離減去BG的長度,則可求解.【詳解】依題意,在中,為EF的中點,,,點G在以B為圓心,2為半徑的圓與長方形重合的弧上運動,,要使四邊形AGCD的面積最小,則B所在直線垂直線段AC,又,點B到AC的距離為,此時點G到AC的距離為,故的最小面積為,,故答案為:38.【考點】本題考查了動點問題中四邊形的最小面積問題,利用勾股定理,直角三角形中線的性質(zhì),三角形等積法求高等性質(zhì)定理進行求解,對于相關(guān)性質(zhì)定理的熟練運用是解題的關(guān)鍵.8、【解析】【分析】設(shè)方程的另一個根為c,再根據(jù)根與系數(shù)的關(guān)系即可得出結(jié)論.【詳解】解:設(shè)方程的另一個根為c,∵,∴.故答案為.【考點】本題考查的是根與系數(shù)的關(guān)系,熟記一元二次方程根與系數(shù)的關(guān)系是解答此題的關(guān)鍵.9、,【解析】【分析】如圖BD:AC=3:4,AB=10cm,設(shè)BD=3x,則AC=4x,根據(jù)菱形的性質(zhì),DO=BO=,AO=CO=2x,在RtΔAOD中,AD2+DO2+AO2,,求出x,BD=3x,AC=4x即可.【詳解】如圖BD:AC=3:4,AB=10cm,設(shè)BD=3x,則AC=4x,根據(jù)菱形的性質(zhì),DO=BO=,AO=CO=2x,AC垂直BD在RtΔAOD中,AD2+DO2+AO2,,x=4,AC=4×4=16,BD=3×4=12,則兩條對角線的長度分別是12cm,16cm.故答案為:12cm,16cm.【考點】本題考查菱形的對角線問題,掌握菱形的性質(zhì),利用對角線之間的關(guān)系,和勾股定理構(gòu)造方程是解題關(guān)鍵.10、【解析】【分析】由題意易得,,則有,進而根據(jù)折疊的性質(zhì)可得,,然后根據(jù)三角形內(nèi)角和可得,最后根據(jù)等腰直角三角形的性質(zhì)可求解.【詳解】解:∵四邊形是菱形,∴,∵,∴,是等邊三角形,即,∵,∴,由折疊的性質(zhì)可得,,,在中,由三角形內(nèi)角和可得,∴,即,∴是等腰直角三角形,∴;故答案為.【考點】本題主要考查菱形的性質(zhì)、折疊的性質(zhì)及等腰直角三角形的性質(zhì)與判定,熟練掌握菱形的性質(zhì)、折疊的性質(zhì)及等腰直角三角形的性質(zhì)與判定是解題的關(guān)鍵.四、解答題1、(1);;理由見解析;(2)與的數(shù)量及位置關(guān)系都不變;答案見解析.【解析】【分析】(1)證明,由全等三角形的性質(zhì)得出,,得出,則可得出結(jié)論;(2)證明,由全等三角形的性質(zhì)得出,,由平行線的性質(zhì)證出,則可得出結(jié)論.【詳解】解:(1),.由題意可得,平行四邊形為矩形,,,,,,,,,設(shè)與交于點,則,即.(2)與的數(shù)量及位置關(guān)系都不變.如圖,延長到點,四邊形為平行四邊形,,,,,,,,,,又,,,,,,,,,即.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),正方形的性質(zhì),解題的關(guān)鍵是:熟練掌握正方形的性質(zhì).2、105°【解析】【分析】首先過點A作AO⊥FB的延長線于點O,連接BD,交AC于點Q,易得四邊形AOBQ是正方形,四邊形ACFE是菱形,Rt△AOE中,AE=2AO,即可求得∠AEO=30°,繼而求得答案.【詳解】作AO⊥FB的延長線,BQ⊥AC∵BF∥AC,∴AO∥BQ且∠QAB=∠QBA=45°∴AO=BQ=AQ=AC∵AE=AC

∴AO=AE∴∠AEO=30°∵BF∥AC

∴∠CAE∠AEO=30°∵BF∥AC,CF∥AE

∴∠CFE∠CAE=30°∵BF∥AC

∴∠CBF∠BCA=45°∠BCF=180°-∠CBF-∠CFE=180°-45°-30°=105°【考點】本題考了正方形的性質(zhì)、平行四邊形的判定與性質(zhì)以及含30°的直角三角形的性質(zhì),解題關(guān)鍵是注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.3、(1)見解析;(2)AB=AC或【解析】【分析】(1)根據(jù)三角形中位線定理和平行四邊形的判定和性質(zhì)解答即可;(2)根據(jù)矩形的判定解答即可.【詳解】(1)∵是的中線,∴,∵,∴,∵,∴四邊形是平行四邊形,∴(2)當△ABC滿足AB=AC或時,四邊形ADCE是矩形,∴AE=CD,∵AE∥BC,∴四邊形ADCE是平行四邊形,∵AB=DE,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論