重難點解析人教版8年級數(shù)學下冊《平行四邊形》專題訓(xùn)練試卷(含答案解析)_第1頁
重難點解析人教版8年級數(shù)學下冊《平行四邊形》專題訓(xùn)練試卷(含答案解析)_第2頁
重難點解析人教版8年級數(shù)學下冊《平行四邊形》專題訓(xùn)練試卷(含答案解析)_第3頁
重難點解析人教版8年級數(shù)學下冊《平行四邊形》專題訓(xùn)練試卷(含答案解析)_第4頁
重難點解析人教版8年級數(shù)學下冊《平行四邊形》專題訓(xùn)練試卷(含答案解析)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學下冊《平行四邊形》專題訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、在中,AC與BD相交于點O,要使四邊形ABCD是菱形,還需添加一個條件,這個條件可以是()A.AO=CO B.AO=BO C.AO⊥BO D.AB⊥BC2、如圖,在△ABC中,∠ABC=90°,AC=18,BC=14,D,E分別是AB,AC的中點,連接DE,BE,點M在CB的延長線上,連接DM,若∠MDB=∠A,則四邊形DMBE的周長為()A.16 B.24 C.32 D.403、如圖,在長方形ABCD中,AB=6,BC=8,點E是BC邊上一點,將△ABE沿AE折疊,使點B落在點F處,連接CF,當△CEF為直角三角形時,則BE的長是()A.4 B.3 C.4或8 D.3或64、已知菱形的邊長為6,一個內(nèi)角為60°,則菱形較長的對角線長是()A. B. C.3 D.65、在ABCD中,添加以下哪個條件能判斷其為菱形()A.AB⊥BC B.BC⊥CD C.CD⊥AC D.AC⊥BD第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,正方形的邊長為4,它的兩條對角線交于點,過點作邊的垂線,垂足為,的面積為,過點作的垂線,垂足為,△的面積為,過點作的垂線,垂足為,△的面積為,△的面積為,那么__,則__.2、在平行四邊形ABCD中,BF平分∠ABC,交AD于點F,CE平分∠BCD,交AD于點E,AB=6,EF=2,則BC的長為_____.3、如圖,在一張矩形紙片ABCD中,AB=30cm,將紙片對折后展開得到折痕EF.點P為BC邊上任意一點,若將紙片沿著DP折疊,使點C恰好落在線段EF的三等分點上,則BC的長等于_________cm.4、如圖,點E,F(xiàn)在正方形ABCD的對角線AC上,AC=10,AE=CF=3,則四邊形BFDE的面積為_____.5、如圖,直線l經(jīng)過正方形ABCD的頂點B,點A,C到直線l的距離分別是1,3,則正方形ABCD的面積是_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,∠ACB=90°,CD⊥AB于點D,AF平分∠CAB交CD于點E,交BC于點F,作EG∥AB交CB于點G.(1)求證:△CEF是等腰三角形;(2)求證:CF=BG;(3)若F是CG的中點,EF=1,求AB的長.2、如圖,ABCD的對角線AC、BD相交于點O,BD12cm,AC6cm,點E在線段BO上從點B以1cm/s的速度向點O運動,點F在線段OD上從點O以2cm/s的速度向點D運動.

(1)若點E、F同時運動,設(shè)運動時間為t秒,當t為何值時,四邊形AECF是平行四邊形.(2)在(1)的條件下,當AB為何值時,AECF是菱形;(3)求(2)中菱形AECF的面積.3、如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對角線AC的三等分點,連接BE,DF.證明BE=DF.4、已知矩形ABCD,AB=6,BC=10,以BC所在直線為x軸,AB所在直線為y軸,建立如圖所示的平面直角坐標系,在CD邊上取一點E,將△ADE沿AE翻折,點D恰好落在BC邊上的點F處.(1)求線段EF長;(2)在平面內(nèi)找一點G,①使得以A、B、F、G為頂點的四邊形是平行四邊形,請直接寫出點G的坐標;②如圖2,將圖1翻折后的矩形沿y軸正半軸向上平移m(m>0)個單位,若以A、O、F、G為頂點的四邊形為菱形,請求出m的值并寫出點G的坐標.5、如圖:已知△BCD是等腰直角三角形,且∠DCB=90°,過點D作AD∥BC,使AD=BC,在AD上取一點E,連結(jié)CE,點B關(guān)于CE的對稱點為B1,連結(jié)B1D,并延長B1D交BA的延長線于點F,延長CE交B1F于點G,連結(jié)BG.(1)求證:∠CBG=∠CDB1;(2)若AE=DE,BC=10,求BG長;(3)在(2)的條件下,H為直線BG上一點,使△HCG為等腰三角形,則所有滿足要求的BH的長是.(直接寫出答案)-參考答案-一、單選題1、C【解析】【分析】根據(jù)菱形的判定分析即可;【詳解】∵四邊形ABCD時平行四邊形,AO⊥BO,∴是菱形;故選C.【點睛】本題主要考查了菱形的判定,準確分析判斷是解題的關(guān)鍵.2、C【解析】【分析】由中點的定義可得AE=CE,AD=BD,根據(jù)三角形中位線的性質(zhì)可得DE//BC,DE=BC,根據(jù)平行線的性質(zhì)可得∠ADE=∠ABC=90°,利用ASA可證明△MBD≌△EDA,可得MD=AE,DE=MB,即可證明四邊形DMBE是平行四邊形,可得MD=BE,進而可得四邊形DMBE的周長為2DE+2MD=BC+AC,即可得答案.【詳解】∵D,E分別是AB,AC的中點,∴AE=CE,AD=BD,DE為△ABC的中位線,∴DE//BC,DE=BC,∵∠ABC=90°,∴∠ADE=∠ABC=90°,在△MBD和△EDA中,,∴△MBD≌△EDA,∴MD=AE,DE=MB,∵DE//MB,∴四邊形DMBE是平行四邊形,∴MD=BE,∵AC=18,BC=14,∴四邊形DMBE的周長=2DE+2MD=BC+AC=18+14=32.故選:C.【點睛】本題考查全等三角形的判定與性質(zhì)、三角形中位線的性質(zhì)及平行四邊形的判定與性質(zhì),三角形中位線平行于第三邊且等于第三邊的一半;有一組對邊平行且相等的四邊形是平行四邊形;熟練掌握相關(guān)性質(zhì)及判定定理是解題關(guān)鍵.3、D【解析】【分析】當為直角三角形時,有兩種情況:①當點F落在矩形內(nèi)部時連接,先利用勾股定理計算出,根據(jù)折疊的性質(zhì)得,而當為直角三角形時,只能得到,所以點A、F、C共線,即沿折疊,使點B落在對角線上的點F處,則,,可計算出然后利用勾股定理求解即可;②當點F落在邊上時.此時為正方形,由此即可得到答案.【詳解】解:當為直角三角形時,有兩種情況:①當點F落在矩形內(nèi)部時,如圖所示.連接,在中,,,∴,∵△ABE沿折疊,使點B落在點F處,∴,BE=EF,當為直角三角形時,只能得到,∴∴點A、F、C共線,即△ABE沿折疊,使點B落在對角線上的點F處,∴,∴,設(shè)BE=EF=x,則EC=BC-BE=8-x,∵,∴,解得,∴BE=3;②當點F落在邊上時,如圖所示,由折疊的性質(zhì)可知AB=AF,BE=EF,∠AEF=∠B=90°,∠FEC=90°,∴為正方形,∴,綜上所述,BE的長為3或6.故選D.【點睛】本題考查折疊問題:折疊前后兩圖形全等,即對應(yīng)線段相等;對應(yīng)角相等.也考查了矩形的性質(zhì),正方形的性質(zhì)與判定以及勾股定理.解題的關(guān)鍵是要注意本題有兩種情況,需要分類討論,避免漏解.4、B【解析】【分析】根據(jù)一個內(nèi)角為60°可以判斷較短的對角線與兩鄰邊構(gòu)成等邊三角形,求出較長的對角線的一半,再乘以2即可得解.【詳解】解:如圖,菱形ABCD,∠ABC=60°,∴AB=BC,AC⊥BD,OB=OD,∴△ABC是等邊三角形,菱形的邊長為6,∴AC=6,∴AO=AC=3,在Rt△AOB中,BO===3,∴菱形較長的對角線長BD是:2×3=6.故選:B.【點睛】本題考查了菱形的性質(zhì)和勾股定理,等邊三角形的判定,解題關(guān)鍵是熟練運用菱形的性質(zhì)和等邊三角形的判定求出對角線長.5、D【解析】【分析】根據(jù)對角線互相垂直的平行四邊形是菱形,結(jié)合選項找到對角線互相垂直即可求解.【詳解】A、∵AB⊥BC,∴∠ABC=90°,又∵四邊形ABCD是平行四邊形,∴四邊形ABCD是矩形;故選項A不符合題意;B、C選項,同A選項一樣,均為鄰邊垂直,ABCD是矩形;故選項B、C不符合題意;D、∵四邊形ABCD是平行四邊形,又∵AC⊥BD,∴四邊形ABCD是菱形;故選項D符合題意故選D【點睛】本題考查了菱形的判定,掌握菱形的判定定理是解題的關(guān)鍵.二、填空題1、【解析】【分析】由正方形的性質(zhì)得出、、、、,,得出規(guī)律,再求出它們的和即可.【詳解】解:四邊形是正方形,,,,,,,,,,,;故答案為:;.【點睛】本題是圖形的變化題,考查了正方形的性質(zhì)、三角形面積的計算,解題的關(guān)鍵是通過計算三角形的面積得出規(guī)律.2、10或14##14或10【解析】【分析】利用BF平分∠ABC,CE平分∠BCD,以及平行關(guān)系,分別求出、,通過和是否相交,分兩類情況討論,最后通過邊之間的關(guān)系,求出的長即可.【詳解】解:四邊形ABCD是平行四邊形,,,,,,BF平分∠ABC,CE平分∠BCD,,,,,由等角對等邊可知:,,情況1:當與相交時,如下圖所示:,,,情況2:當與不相交時,如下圖所示:,,故答案為:10或14.【點睛】本題主要是考查了平行四邊形的性質(zhì),熟練運用平行關(guān)系+角平分線證邊相等,是解決本題的關(guān)鍵,還要注意根據(jù)和是否相交,本題分兩類情況,如果沒考慮仔細,會漏掉一種情況.3、或【解析】【分析】分為將紙片沿縱向?qū)φ?,和沿橫向?qū)φ蹆煞N情況,利用折疊的性質(zhì),以及勾股定理解答即可【詳解】如圖:當將紙片沿縱向?qū)φ鄹鶕?jù)題意可得:為的三等分點在中有如圖:當將紙片沿橫向?qū)φ鄹鶕?jù)題意得:,在中有為的三等分點故答案為:或【點睛】本題考查了矩形的性質(zhì),折疊的性質(zhì),以及勾股定理解直角三角形,解題關(guān)鍵是分兩種情況作出折痕,考慮問題應(yīng)全面,不應(yīng)丟解.4、20【解析】【分析】連接BD,交AC于O,根據(jù)題意和正方形的性質(zhì)可求得EF=4,AC⊥BD,由即可求解.【詳解】解:如圖,連接BD,交AC于O,∵四邊形ABCD是正方形,AC=10,∴AC=BD=10,AC⊥BD,OA=OC=OB=OD=5,∵AE=CF=3,∴EO=FO=2,∴EF=EO+FO=4,∴故答案為:20.【點睛】本題主要考查了正方形的性質(zhì),熟練掌握正方形的對角線相等且互相垂直平分是解題的關(guān)鍵.5、10【解析】【分析】根據(jù)正方形的性質(zhì),結(jié)合題意易求證,,,即可利用“ASA”證明,得出.最后根據(jù)勾股定理可求出,即正方形的面積為10.【詳解】∵四邊形ABCD是正方形,∴,,∴.根據(jù)題意可知:,,∴,,∴在和中,,∴,∴.∵在中,,∴正方形ABCD的面積是10.故答案為:10.【點睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì)以及勾股定理.利用數(shù)形結(jié)合的思想是解答本題的關(guān)鍵.三、解答題1、(1)見解析;(2)見解析;(3)【分析】(1)由余角的性質(zhì)可得∠3=∠7=∠4,可得CE=CF,可得△CEF為等腰三角形;

(2)過E作EM∥BC交AB于M,得出平行四邊形EMBG,推出BG=EM,由“AAS”可證△CAE≌△MAE,推出CE=EM,由三角形的面積關(guān)系可求GB的長;

(3)證明△CEF是等邊三角形,求出BC,可得結(jié)論.【詳解】(1)證明:過E作EM∥BC交AB于M,∵EG∥AB,∴四邊形EMBG是平行四邊形,∴BG=EM,∠B=∠EMD,∵CD⊥AB,∴∠ADC=∠ACB=90°,∴∠1+∠7=90°,∠2+∠3=90°,∵AE平分∠CAB,∴∠1=∠2,∵∠3=∠4,∴∠4=∠7,∴CE=CF,∴△CEF是等腰三角形;(2)證明:過E作EM∥BC交AB于M,則四邊形EMBG是平行四邊形,∴BG=EM,∵∠ADC=∠ACB=90°,∴∠CAD+∠B=90°,∠CAD+∠ACD=90°,∴∠ACD=∠B=∠EMD,∵在△CAE和△MAE中,∴△CAE≌△MAE(AAS),∴CE=EM,∵CE=CF,EM=BG,∴CF=BG.(3)∵CD⊥AB,EG∥AB,∴EG⊥CD,∴∠CEG=90°,∵CF=FG,∴EF=CF=FG,∵CE=CF,∴CE=CF=EF=1,∴△CEF是等邊三角形,∴∠ECF=60°,∴BC=3,∠B=30°,∴∴Rt△ABC中∴解得.【點睛】本題考查了平行四邊形的性質(zhì)和判定,三角形的內(nèi)角和定理,全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì)和判定等知識點,主要考查學生綜合運用定理進行推理的能力,有一定的難度.2、(1)t=2s;(2)AB=;(3)24【分析】(1)若是平行四邊形,所以BD=12cm,則BO=DO=6cm,故有6-t=2t,即可求得t值;

(2)若是菱形,則AC垂直于BD,即有,故AB可求;

(3)根據(jù)四邊形AECF是菱形,求得,根據(jù)平行四邊形的性質(zhì)得到BO=OD,求得BE=DF,列方程到底BE=DF=2,求得EF=8,于是得到結(jié)論.【詳解】解:(1)∵四邊形ABCD為平行四邊形,∴AO=OC,EO=OF,∵BO=OD=6cm,∴,∴,∴,∴當t為2秒時,四邊形AECF是平行四邊形;(2)若四邊形AECF是菱形,則,,;∴當AB為時,平行四邊形是菱形;(3)由(1)(2)可知當t=2s,AB=時,四邊形AECF是菱形,∴EO=6?t=4,∴EF=8,∴菱形AECF的面積=.【點睛】本題考查了平行四邊形的判定和性質(zhì)和菱形的判定和性質(zhì),勾股定理,菱形的面積的計算.3、見詳解【分析】由題意易得AB=CD,AB∥CD,AE=CF,則有∠BAE=∠DCF,進而問題可求證.【詳解】證明:∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF,∵E,F(xiàn)是對角線AC的三等分點,∴AE=CF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴BE=DF.【點睛】本題主要考查平行四邊形的性質(zhì)及全等三角形的性質(zhì)與判定,熟練掌握平行四邊形的性質(zhì)及全等三角形的性質(zhì)與判定是解題的關(guān)鍵.4、(1)103;(2)①點G的坐標為(﹣8,6)或(8,6)或(8,﹣6);②m=4,G(8,?6)或m=6,G(?8,6).或m=【分析】(1)由矩形的性質(zhì)得AD=BC=OC=10,CD=AB=OA=6,∠AOC=∠ECF=90°,由折疊性質(zhì)得EF=DE,AF=AD=10,則CE=6﹣EF,由勾股定理求出BF=OF=8,則FC=OC﹣OF=2,在Rt△ECF中,由勾股定理得出方程,解方程即可;(2)①分三種情況,當AB為平行四邊形的對角線時;當AF為平行四邊形的對角線時;當BF為平行四邊形的對角線時,分別求解點G的坐標即可;②分三種情況討論,當OF為對角線時,由菱形的性質(zhì)得OA=AF=10,則矩形ABCD平移距離m=OA﹣AB=4,即OB=4,設(shè)FG交x軸于H,證出四邊形OBFH是矩形,得FH=OB=4,OH=BF=8,則HG=6,如圖,當AO為菱形的對角線時,當AF為菱形的對角線時,結(jié)合矩形與菱形的性質(zhì)同理可得出答案.【詳解】解:(1)∵四邊形ABCD是矩形,∴AD=BC=OC=10,CD=AB=OA=6,∠AOC=∠ECF=90°,由折疊性質(zhì)得:EF=DE,AF=AD=10,∴CE=CD﹣DE=CD﹣EF=6﹣EF,由勾股定理得:BF=OF=A∴FC=OC﹣OF=10﹣8=2,在Rt△ECF中,由勾股定理得:EF2=CE2+FC2,即:EF2=(6﹣EF)2+22,解得:EF=103(2)①如圖所示:當AB為平行四邊形的對角線時,AG=BF=8,AG∥∴點G的坐標為:(﹣8,6);當AF為平行四邊形的對角線時,AG'=BF=8,AG'∥∴點G'的坐標為:(8,6);當BF為平行四邊形的對角線時,F(xiàn)G''=AB=6,F(xiàn)G''∥∴點G''的坐標為:(8,﹣6);綜上所述,點G的坐標為(﹣8,6)或(8,6)或(8,﹣6);②如圖,當OF為菱形的對角線時,∵四邊形AOGF為菱形,∴OA=AF=10,∴矩形ABCD平移距離m=OA﹣AB=10﹣6=4,即OB=4,設(shè)FG交x軸于H,如圖所示:∵OA∥FG,∴∠FBO=∠BOH=∠OHF=90°,∴四邊形OBFH是矩形,∴FH=OB=4,OH=BF=8,∴HG=10﹣4=6,∴點G的坐標為:(8,﹣6).如圖,當AO為菱形的對角線時,則AB=OB=6,GB=BF=8,AO⊥GF,∴m=6,G(?8,6).如圖,當AF為菱形的對角線時,同理可得:OA=OF,OA=m+6,且GF∥∴A(0,m+6),F(8,m),∴(m+6)解得:m=7∴A(0,25所以∴G(8,73+綜上:平移距離m與G的坐標分別為:m=4,G(8,?6)或m=6,G(?8,6)或m=7【點睛】本題是四邊形綜合題目,考查了矩形的判定與性質(zhì)、菱形的判定與性質(zhì),坐標與圖形性質(zhì)、平行四邊形的性質(zhì)、勾股定理、折疊變換的性質(zhì)、平移的性質(zhì)等知識;熟練掌握矩形的性質(zhì)和折疊的性質(zhì)是解題的關(guān)鍵.5、(1)證明過程見解析;(2)BG的長為4;(3)2或6﹣4或或6+4【分析】(1)連結(jié)BB1交CG于點M,交CD于點Q,證明四邊形ABCD是正方形,再根據(jù)對稱的性質(zhì)得到CE垂直平分BB1,得到△BCG≌△B1CG(SSS),即可得解;(2)設(shè)BG交AD于點N,得到△BCQ≌△CDE(ASA),得到CQ=DE=5,BQ=CE=5,再根據(jù)勾股定理得到BM,最后利用勾股定理計算即可;(3)根據(jù)點G的位置不同分4種情況進行討論計算即可;【詳解】(1)證明:如圖1,連結(jié)BB1交CG于點M,交CD于點Q,∵AD∥BC,AD=BC,∴四邊形ABCD是平行四邊形,∵BC=DC,∠BCD=90°,∴四邊形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論