版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
中考數(shù)學(xué)總復(fù)習(xí)《圓》強(qiáng)化訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,已知中,,,,如果以點(diǎn)為圓心的圓與斜邊有公共點(diǎn),那么⊙的半徑的取值范圍是(
)A. B. C. D.2、如圖,拱橋可以近似地看作直徑為250m的圓弧,橋拱和路面之間用數(shù)根鋼索垂直相連,其正下方的路面AB長度為150m,那么這些鋼索中最長的一根的長度為()A.50m B.40m C.30m D.25m3、如圖,△ABC內(nèi)接于⊙O,∠A=50°.E是邊BC的中點(diǎn),連接OE并延長,交⊙O于點(diǎn)D,連接BD,則∠D的大小為()A.55° B.65° C.60° D.75°4、已知平面內(nèi)有和點(diǎn),,若半徑為,線段,,則直線與的位置關(guān)系為(
)A.相離 B.相交 C.相切 D.相交或相切5、如圖所示,矩形紙片中,,把它分割成正方形紙片和矩形紙片后,分別裁出扇形和半徑最大的圓,恰好能作為一個(gè)圓錐的底面和側(cè)面,則圓錐的表面積為(
)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,四邊形是的外切四邊形,且,,則四邊形的周長為__________.2、如圖,將三角形AOC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)120°得三角形BOD,已知OA=4,OC=1,那么圖中陰影部分的面積為_____.(結(jié)果保留π)3、如圖,A、B、C、D為一個(gè)正多邊形的相鄰四個(gè)頂點(diǎn),O為正多邊形的中心,若∠ADB=12°,則這個(gè)正多邊形的邊數(shù)為____________4、如圖,直線y=﹣x+6與x軸、y軸分別交于A、B兩點(diǎn),點(diǎn)P是以C(﹣1,0)為圓心,1為半徑的圓上一點(diǎn),連接PA,PB,則△PAB面積的最大值為_____.5、如圖,在甲,,,,以點(diǎn)為圓心,的長為半徑作圓,交于點(diǎn),交于點(diǎn),陰影部分的面積為__________(結(jié)果保留).三、解答題(5小題,每小題10分,共計(jì)50分)1、如下圖是一個(gè)隧道的橫截面,它的形狀是以點(diǎn)O為圓心的圓的一部分.如果M是中弦的中點(diǎn),經(jīng)過圓心O交圓O于點(diǎn)E,并且.求的半徑.2、如圖,AB是⊙O的直徑,D,E為⊙O上位于AB異側(cè)的兩點(diǎn),連接BD并延長至點(diǎn)C,使得CD=BD,連接AC交⊙O于點(diǎn)F,連接AE,DE,DF.(1)證明:∠E=∠C;(2)若∠E=55°,求∠BDF的度數(shù).3、如圖,已知拋物線的頂點(diǎn)坐標(biāo)為M,與x軸相交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸相交于點(diǎn)C.(1)用配方法將拋物線的解析式化為頂點(diǎn)式:(),并指出頂點(diǎn)M的坐標(biāo);(2)在拋物線的對稱軸上找點(diǎn)R,使得CR+AR的值最小,并求出其最小值和點(diǎn)R的坐標(biāo);(3)以AB為直徑作⊙N交拋物線于點(diǎn)P(點(diǎn)P在對稱軸的左側(cè)),求證:直線MP是⊙N的切線.4、如圖,在△ABC中,AB=AC,∠BAC與∠ABC的角平分線相交于點(diǎn)E,AE的延長線交△ABC的外接圓于點(diǎn)D,連接BD.(1)求證:∠BAD=∠DBC;(2)證明:點(diǎn)B、E、C在以點(diǎn)D為圓心的同一個(gè)圓上;(3)若AB=5,BC=8,求△ABC內(nèi)心與外心之間的距離.5、等邊三角形的邊長為1厘米,面積為0.43平方厘米.以點(diǎn)為圓心,長為半徑在三角形外畫弧,交的延長線于點(diǎn),形成扇形;以點(diǎn)為圓心,長為半徑畫弧,交的延長線于點(diǎn),形成扇形;以點(diǎn)為圓心,長為半徑畫弧,交的延長線于點(diǎn),形成扇形.(1)求所得的圖形的周長;(結(jié)果保留)(2)照此規(guī)律畫至第十個(gè)扇形,求所圍成的圖形的面積以及所畫出的所有弧長的和.(結(jié)果保留)-參考答案-一、單選題1、C【解析】【分析】作CD⊥AB于D,根據(jù)勾股定理計(jì)算出AB=13,再利用面積法計(jì)算出然后根據(jù)直線與圓的位置關(guān)系得到當(dāng)時(shí),以C為圓心、r為半徑作的圓與斜邊AB有公共點(diǎn).【詳解】解:作CD⊥AB于D,如圖,∵∠C=90°,AC=3,BC=4,∴∴∴以C為圓心、r為半徑作的圓與斜邊AB有公共點(diǎn)時(shí),r的取值范圍為故選:C【考點(diǎn)】本題考查了直線與圓的位置關(guān)系:設(shè)⊙O的半徑為r,圓心O到直線l的距離為d:直線l和⊙O相交?d<r;直線l和⊙O相切?d=r;直線l和⊙O相離?d>r.2、D【解析】【分析】設(shè)圓弧的圓心為O,過O作OC⊥AB于C,交于D,連接OA,先由垂徑定理得AC=BC=AB=75m,再由勾股定理求出OC=100m,然后求出CD的長即可.【詳解】解:設(shè)圓弧的圓心為O,過O作OC⊥AB于C,交于D,連接OA,則OA=OD=×250=125(m),AC=BC=AB=×150=75(m),∴OC===100(m),∴CD=OD﹣OC=125﹣100=25(m),即這些鋼索中最長的一根為25m,故選:D.【考點(diǎn)】本題考查了垂徑定理和勾股定理等知識(shí);熟練掌握垂徑定理和勾股定理是解題的關(guān)鍵.3、B【解析】【分析】連接CD,根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠CDB=180°﹣∠A=130°,根據(jù)垂徑定理得到OD⊥BC,求得BD=CD,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】解:連接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是邊BC的中點(diǎn),∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODC=∠BDC=65°,故選:B.【考點(diǎn)】本題考查了圓內(nèi)接四邊形的性質(zhì),垂徑定理,等腰三角形的性質(zhì)等知識(shí).正確理解題意是解題的關(guān)鍵.4、D【解析】【分析】根據(jù)點(diǎn)與圓的位置關(guān)系的判定方法進(jìn)行判斷.【詳解】解:∵⊙O的半徑為2cm,線段OA=3cm,線段OB=2cm,即點(diǎn)A到圓心O的距離大于圓的半徑,點(diǎn)B到圓心O的距離等于圓的半徑,∴點(diǎn)A在⊙O外.點(diǎn)B在⊙O上,∴直線AB與⊙O的位置關(guān)系為相交或相切,故選:D.【考點(diǎn)】本題考查了直線與圓的位置關(guān)系,正確的理解題意是解題的關(guān)鍵.5、B【解析】【分析】設(shè)圓錐的底面的半徑為rcm,則DE=2rcm,利用圓錐的側(cè)面展開圖為一扇形,這個(gè)扇形的弧長等于圓錐底面的周長得到2πr,解方程求出r,然后求得直徑即可.【詳解】解:設(shè)圓錐的底面的半徑為rcm,則AE=BF=6-2r根據(jù)題意得2πr,解得r=1,側(cè)面積=,底面積=所以圓錐的表面積=,故選:B.【考點(diǎn)】本題綜合考查有關(guān)扇形和圓錐的相關(guān)計(jì)算.解題思路:解決此類問題時(shí)要緊緊抓住兩者之間的兩個(gè)對應(yīng)關(guān)系:(1)圓錐的母線長等于側(cè)面展開圖的扇形半徑;(2)圓錐的底面周長等于側(cè)面展開圖的扇形弧長.正確對這兩個(gè)關(guān)系的記憶是解題的關(guān)鍵.二、填空題1、48【解析】【分析】根據(jù)切線長定理得到AE=AH,BE=BF,CF=CG,DH=DG,得到AD+BC=AB+CD=24,根據(jù)四邊形的周長公式計(jì)算,得到答案.【詳解】解:∵四邊形ABCD是⊙O的外切四邊形,∴AE=AH,BE=BF,CF=CG,DH=DG,∴AD+BC=AB+CD=24,∴四邊形ABCD的周長=AD+BC+AB+CD=24+24=48,故答案為:48.【考點(diǎn)】本題考查了切線長定理,掌握從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等是解題的關(guān)鍵.2、5π【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積,利用扇形的面積公式計(jì)算即可求解.【詳解】∵△AOC≌△BOD,∴陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積5π.故答案為5π.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì)以及扇形的面積公式,正確理解:陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積是解題的關(guān)鍵.3、15【解析】【分析】連接AO,BO,根據(jù)圓周角定理得到∠AOB=24°,根據(jù)中心角的定義即可求解.【詳解】如圖,連接AO,BO,∴∠AOB=2∠ADB=24°∴這個(gè)正多邊形的邊數(shù)為=15故答案為:15.【考點(diǎn)】此題主要考查正多邊形的性質(zhì),解題的關(guān)鍵是熟知圓周角定理.4、32【解析】【分析】如圖,作CH⊥AB于H交⊙O于E、F,求出A、B的坐標(biāo),根據(jù)勾股定理求出AB,再由S△ABC=AB?CH=OB?AC求出點(diǎn)C到AB的距離CH,即可求出圓C上點(diǎn)到AB的最大距離,根據(jù)面積公式求出即可.【詳解】如圖,作CH⊥AB于H交⊙O于E、F,∵直線y=﹣x+6與x軸、y軸分別交于A、B兩點(diǎn),∴當(dāng)y=0時(shí),可得0=﹣x+6,解得:x=8,∴A(8,0),當(dāng)x=0時(shí),得y=6,∴B(0,6),∴OA=8,OB=6,∴=10,∵C(﹣1,0),∴AC=8+1=9,∴S△ABC=AB?CH=OB?AC,∴,∴CH=5.4,∴FH=CH+CF=5.4+1=6.4,即⊙C上到AB的最大距離為6.4,∴△PAB面積的最大值=×10×6.4=32,故答案為32.【考點(diǎn)】本題考查了三角形的面積,勾股定理、三角形等面積法求高、求圓心到直線的距離等知識(shí),解此題的關(guān)鍵是求出圓上的點(diǎn)到直線AB的最大距離.5、【解析】【分析】連接BE,根據(jù)正切的定義求出∠A,根據(jù)扇形面積公式、三角形的面積公式計(jì)算即可.【詳解】解:連接BE,在Rt△ABC中,∠ABC=90°,∴tanA=,∴∠A=60°,∵BA=BE,∴△ABE為等邊三角形,∴∠ABE=30°,∴∠EBC=30°,∴陰影部分的面積=×2×2×+=故答案為.【考點(diǎn)】本題考查的是扇形面積計(jì)算、等邊三角形的判定和性質(zhì),掌握扇形面積公式是解題的關(guān)鍵.三、解答題1、【解析】【分析】連接CO,利用垂徑定理求解再令⊙O的半徑為rm,利用勾股定理建立方程求解半徑即可得到答案.【詳解】解:連接CO.∵M(jìn)是弦CD的中點(diǎn),且EM經(jīng)過圓心O,∴EM⊥CD,且CM=CD=×4=2.在Rt△OCM中,令⊙O的半徑為rm,∵OC2=OM2+CM2,∴,解得:r=.【考點(diǎn)】本題考查的是垂徑定理的應(yīng)用,勾股定理的應(yīng)用,掌握利用垂徑定理構(gòu)建直角三角形是解題的關(guān)鍵.2、(1)詳見解析;(2)110°.【解析】【分析】(1)連接AD,利用直徑所對的圓周角為直角,可得AD⊥BC,再根據(jù)CD=BD,故AD垂直平分BC,根據(jù)垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等,可得:AB=AC,再根據(jù)等邊對等角和同弧所對的圓周角相等即可得到∠E=∠C;(2)根據(jù)內(nèi)接四邊形的性質(zhì):四邊形的外角等于它的內(nèi)對角,可得∠CFD=∠E=55°,再利用外角的性質(zhì)即可求出∠BDF.【詳解】(1)證明:連接AD,如圖所示:∵AB是⊙O的直徑,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,∵∠B=∠E,∴∠E=∠C;(2)解:∵四邊形AEDF是⊙O的內(nèi)接四邊形,∴∠AFD=180°﹣∠E,∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=55°,由(1)得:∠E=∠C=55°,∴∠BDF=∠C+∠CFD=55°+55°=110°.【考點(diǎn)】此題考查的是(1)直徑所對的圓周角是直角、垂直平分線的性質(zhì)和同弧所對的圓周角相等;(2)內(nèi)接四邊形的性質(zhì).3、(1),M(,);(2),(,);(3)證明見試題解析.【解析】【詳解】試題分析:(1)利用配方法把一般式轉(zhuǎn)化為頂點(diǎn)式,然后根據(jù)二次函數(shù)的性質(zhì)求出拋物線的頂點(diǎn)坐標(biāo);(2)連接BC,則BC與對稱軸的交點(diǎn)為R,此時(shí)CR+AR的值最?。幌惹蟪鳇c(diǎn)A、B、C的坐標(biāo),再利用待定系數(shù)法求出直線BC的解析式,進(jìn)而求出其最小值和點(diǎn)R的坐標(biāo);(3)設(shè)點(diǎn)P坐標(biāo)為(x,).根據(jù)NPAB=,列出方程,解方程得到點(diǎn)P坐標(biāo),再計(jì)算得出,由勾股定理的逆定理得出∠MPN=90°,然后利用切線的判定定理即可證明直線MP是⊙N的切線.試題解析:(1)∵=,∴拋物線的解析式化為頂點(diǎn)式為:,頂點(diǎn)M的坐標(biāo)是(,);(2)∵,∴當(dāng)y=0時(shí),,解得x=1或6,∴A(1,0),B(6,0),∵x=0時(shí),y=﹣3,∴C(0,﹣3).連接BC,則BC與對稱軸x=的交點(diǎn)為R,連接AR,則CR+AR=CR+BR=BC,根據(jù)兩點(diǎn)之間線段最短可知此時(shí)CR+AR的值最小,最小值為BC==.設(shè)直線BC的解析式為,∵B(6,0),C(0,﹣3),∴,解得:,∴直線BC的解析式為:,令x=,得y==,∴R點(diǎn)坐標(biāo)為(,);(3)設(shè)點(diǎn)P坐標(biāo)為(x,).∵A(1,0),B(6,0),∴N(,0),∴以AB為直徑的⊙N的半徑為AB=,∴NP=,即,移項(xiàng)得,,得:,整理得:,解得(與A重合,舍去),,(在對稱軸的右側(cè),舍去),(與B重合,舍去),∴點(diǎn)P坐標(biāo)為(2,2).∵M(jìn)(,),N(,0),∴==,==,==,∴,∴∠MPN=90°,∵點(diǎn)P在⊙N上,∴直線MP是⊙N的切線.考點(diǎn):1.二次函數(shù)綜合題;2.最值問題;3.切線的判定;4.壓軸題.4、(1)見解析(2)見解析(3)【解析】【分析】(1)根據(jù)同弧所對的圓周角相等,可得,再由平分,得,從而證明結(jié)論;(2)由,得,再根據(jù),,得,從而有,即可證明;(3)由題意知為內(nèi)心,為外心,設(shè),,則,可求出的長,再根據(jù)勾股定理求出的長,而,從而得出答案.(1)解:證明:平分,,又,;(2)解:證明:,平分,,連接,,平分,,,,,,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026河北省定向長安大學(xué)選調(diào)生招錄備考考試試題及答案解析
- 2025山東日照市五蓮縣教體系統(tǒng)招聘博士研究生2人備考筆試題庫及答案解析
- 深度解析(2026)《GBT 26034-2010片狀銅粉》(2026年)深度解析
- 2025山東青島海建投資有限公司及全資子公司招聘25人參考考試試題及答案解析
- 2025臨滄市臨翔區(qū)自然資源局面向社會(huì)公開招聘編外工作人員(2人)備考考試試題及答案解析
- 深度解析(2026)《GBT 25892.3-2010信息技術(shù) 維吾爾文、哈薩克文、柯爾克孜文編碼字符集 32點(diǎn)陣字型 第3部分:庫非白體》
- 深度解析(2026)《GBT 25725-2010帶電作業(yè)工具專用車》(2026年)深度解析
- 西昌市教育系統(tǒng)2025年下半年考核引進(jìn)教師(98人)備考筆試試題及答案解析
- 2026年威海乳山市民兵訓(xùn)練基地公開招聘事業(yè)單位工作人員(1名)備考考試試題及答案解析
- 江蘇徐州市新沂市面向2026年畢業(yè)生招聘教師88人參考考試試題及答案解析
- 稀土元素功能材料考核試卷
- 店鋪?zhàn)饨鹑牍珊贤瑓f(xié)議
- 醫(yī)療行業(yè)銷售年度工作總結(jié)
- 2024年中國計(jì)量發(fā)展白皮書
- 2025年中國電化學(xué)工作站市場調(diào)查研究報(bào)告
- 財(cái)務(wù)顧問合同聘請財(cái)務(wù)顧問合同
- 政府電梯維保投標(biāo)施工方案
- 四川省涼山州2025中考數(shù)學(xué)適應(yīng)性考試試卷四套附參考答案
- 蔬菜病蟲害綠色防控技術(shù)
- 江蘇省91job智慧就業(yè)平臺(tái)單位中心操作手冊
- 牛黃解毒膠囊藥代動(dòng)力學(xué)
評論
0/150
提交評論