綜合解析北師大版9年級數(shù)學上冊期末試卷附參考答案詳解【鞏固】_第1頁
綜合解析北師大版9年級數(shù)學上冊期末試卷附參考答案詳解【鞏固】_第2頁
綜合解析北師大版9年級數(shù)學上冊期末試卷附參考答案詳解【鞏固】_第3頁
綜合解析北師大版9年級數(shù)學上冊期末試卷附參考答案詳解【鞏固】_第4頁
綜合解析北師大版9年級數(shù)學上冊期末試卷附參考答案詳解【鞏固】_第5頁
已閱讀5頁,還剩30頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

北師大版9年級數(shù)學上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、如圖,菱形ABCD中,∠ABC=60°,AB=4,E是邊AD上一動點,將△CDE沿CE折疊,得到△CFE,則△BCF面積的最大值是(

)A.8 B. C.16 D.2、如圖,一農(nóng)戶要建一個矩形花圃,花圃的一邊利用長為12m的住房墻,另外三邊用25m長的籬笆圍成,為方便進出,在垂直于住房墻的一邊留一個1m寬的門,花圃面積為80m2,設與墻垂直的一邊長為xm,則可以列出關(guān)于x的方程是()A.x(26﹣2x)=80 B.x(24﹣2x)=80C.(x﹣1)(26﹣2x)=80 D.(x-1)(25﹣2x)=803、如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC?CF=2HE.其中正確的結(jié)論有(

)A.1個 B.2個 C.3個 D.4個4、如圖,在中,,,將繞點C順時針旋轉(zhuǎn)得到,點在上,交于F,則圖中與相似的三角形有(不再添加其他線段)(

)A.1個 B.2個 C.3個 D.4個5、在如圖所示的網(wǎng)格中,以點為位似中心,四邊形的位似圖形是(

)A.四邊形 B.四邊形C.四邊形 D.四邊形6、將一元二次方程化成(a,b為常數(shù))的形式,則a,b的值分別是(

)A.,21 B.,11 C.4,21 D.,69二、多選題(6小題,每小題2分,共計12分)1、如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結(jié)論,其中正確的結(jié)論是()A.AC=FG B.S△FAB:S四邊形CBFG=1:2 C.∠ABC=∠ABF D.AD2=FQ?AC2、如圖,在△ABC中,點P為AB上一點,給出下列四個條件中能滿足△APC和△ACB相似的條件是(

)A.∠ACP=∠B B.∠APC=∠ACB C.AC2=AP·AB D.AB·CP=AP·CB3、如圖,△ABC中,P為AB上點,在下列四個條件中能確定△APC和△ACB相似的是(

)A.∠ACP=∠B B.∠APC=∠ACB C.∠CAP=∠BAC D.4、用配方法解下列方程,配方錯誤的是(

)A.化為 B.化為C.化為 D.化為5、不能說明△ABC∽△A’B’C’的條件是(

)A.或 B.且C.且 D.且6、如圖,四邊形ABCD的對角線互相平分,要使它成為矩形,不能添加的條件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、如圖,在邊長為1的正方形ABCD中,等邊△AEF的頂點E、F分別在邊BC和CD上則下列結(jié)論:①CE=CF:②∠AEB=75°;③S△EFC=1;④,其中正確的有______(用序號填寫)2、如圖,AB,CD相交于O點,△AOC∽△BOD,OC:OD=1:2,AC=5,則BD的長為______.3、關(guān)于的一元二次方程的一個根是2,則另一個根是__________.4、已知關(guān)于的方程的一個根是,則____.5、對任意實數(shù)a,b,定義一種運算:,若,則x的值為_________.6、如圖,邊長為4的正方形的對稱中心是坐標原點O,軸,軸,反比例函數(shù)與的圖像均與正方形的邊相交,則圖中陰影部分的面積之和是________.7、如圖,在平面直角坐標系中,長方形OABC的邊OA在x軸上,OC在y軸上,OA=1,OC=2,對角線AC的垂直平分線交AB于點E,交AC于點D.若y軸上有一點P(不與點C重合),能使△AEP是以為AE為腰的等腰三角形,則點P的坐標為____.8、在每個小正方形的邊長為1的網(wǎng)格圖形中,每個小正方形的頂點稱為格點,頂點都是格點的三角形稱為格點三角形.如圖,已知Rt△ABC是6×6網(wǎng)格圖形中的格點三角形,則該圖中所有與Rt△ABC相似的格點三角形中.面積最大的三角形的斜邊長是_____.四、解答題(6小題,每小題10分,共計60分)1、如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點A(m,﹣2).(1)求反比例函數(shù)的解析式;(2)觀察圖象,直接寫出正比例函數(shù)值小于反比例函數(shù)值時自變量x的取值范圍;(3)若雙曲線上點C(2,n)沿OA方向平移個單位長度得到點B,在x軸上是否存在點P,使S△OCP=S四邊形OABC?若存在,請求出P點的坐標;若不存在,請說明理由.2、如圖,四邊形ABCD是菱形,邊長為10cm,對角線AC,BD交于點O,∠BAD=60°.(1)求對角線AC,BD的長;(2)求菱形的面積.3、已知==,求的值.4、如圖,在菱形ABCD中,AB=6,∠DAB=60°,點E是AD邊的中點,點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD,AN.(1)求證:四邊形AMDN是平行四邊形;(2)填空:①當AM的值為時,四邊形AMDN是矩形;②當AM的值為時,四邊形AMDN是菱形.5、如圖,四邊形ABCD是正方形,點E在BC延長線上,DF⊥AE于點F,點G在AE上,且∠ABG=∠E.求證:AG=DF.6、如圖,在△ABC和△DCB中,AB=DC,∠A=∠D,AC、DB交于點M.(1)求證:△ABC≌△DCB;(2)作CN∥BD,BN∥AC,CN交BN于點N,四邊形BNCM是什么四邊形?請證明你的結(jié)論.-參考答案-一、單選題1、A【解析】【分析】由三角形底邊BC是定長,所以當△BCF的高最大時,△BCF的面積最大,即當FC⊥BC時,三角形有最大面積.【詳解】解:在菱形ABCD中,BC=CD=AB=4又∵將△CDE沿CE折疊,得到△CFE,∴FC=CD=4由此,△BCF的底邊BC是定長,所以當△BCF的高最大時,△BCF的面積最大,即當FC⊥BC時,三角形有最大面積∴△BCF面積的最大值是故選:A.【考點】本題考查菱形的性質(zhì)和折疊的性質(zhì),掌握三角形面積的計算方法和菱形的性質(zhì)正確推理計算是解題關(guān)鍵.2、A【解析】【分析】設與墻垂直的一邊長為xm,則與墻平行的一邊長為(26-2x)m,然后根據(jù)花圃面積為80m2列關(guān)于x的一元一次方程即可.【詳解】解:設與墻垂直的一邊長為xm,則與墻平行的一邊長為(26-2x)m由題意得:x(26-2x)=80.故答案為A.【考點】本題考查了根據(jù)題意列一元二次方程,理解題意、設出未知數(shù)、表示出相關(guān)的量、找到等量關(guān)系列方程是解答本題的關(guān)鍵.3、D【解析】【分析】①根據(jù)角平分線的定義可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得AE=AB,從而得到AE=AD,然后利用“角角邊”證明△ABE和△AHD全等,根據(jù)全等三角形對應邊相等可得BE=DH,再根據(jù)等腰三角形兩底角相等求出∠ADE=∠AED=67.5°,根據(jù)平角等于180°求出∠CED=67.5°,從而判斷出①正確;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根據(jù)等角對等邊可得OE=OD=OH,判斷出②正確;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角邊角”證明△BEH和△HDF全等,根據(jù)全等三角形對應邊相等可得BH=HF,判斷出③正確;④根據(jù)全等三角形對應邊相等可得DF=HE,然后根據(jù)HE=AE-AH=BC-CD,BC-CF=BC-(CD-DF)=2HE,判斷出④正確.【詳解】解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°-45°)=67.5°,∴∠CED=180°-45°-67.5°=67.5°,∴∠AED=∠CED,故①正確;∵AB=AH,∵∠AHB=(180°-45°)=67.5°,∠OHE=∠AHB(對頂角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°-67.5°=22.5°,∠ODH=67.5°-45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正確;∵∠EBH=90°-67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正確;∵HE=AE-AH=BC-CD,∴BC-CF=BC-(CD-DF)=BC-(CD-HE)=(BC-CD)+HE=HE+HE=2HE.故④正確;綜上所述,結(jié)論正確的是①②③④共4個.故選:D.【考點】本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),角平分線的定義,等腰三角形的判定與性質(zhì),熟記各性質(zhì)并仔細分析題目條件,根據(jù)相等的度數(shù)求出相等的角,從而得到三角形全等的條件或判斷出等腰三角形是解題的關(guān)鍵,也是本題的難點.4、D【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)及相似三角形的判定方法進行分析,找出存在的相似三角形即可.【詳解】根據(jù)題意得:BC=B′C,AB=A′B′,AC=A′C,∠B=∠B′,∠A=∠A′=30°,∠ACB=∠A′CB′=90°∵∠A=30°,∠ACB=90°∴∠B=60°∴BB′=BC=B′C,∠B=∠BCB′=∠BB′C=60°∴∠B′CA=30°,∠ACA′=60°,A′B′∥BC∴∠B′FC=∠B′FA=90°∴△AB′F∽△ABC∽△A′B′C∽△A′CF∽△CFB′∴有4個故選D.【考點】考查了相似三角形的判定:①如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;②如果兩個三角形的兩條對應邊的比相等,且夾角相等,那么這兩個三角形相似;③如果兩個三角形的兩個對應角相等,那么這兩個三角形相似.平行于三角形一邊的直線截另兩邊或另兩邊的延長線所組成的三角形與原三角形相似.5、A【解析】【分析】以O為位似中心,作四邊形ABCD的位似圖形,根據(jù)圖像可判斷出答案.【詳解】解:如圖所示,四邊形的位似圖形是四邊形.故選:A【考點】此題考查了位似圖形的作法,畫位似圖形的一般步驟為:①確定位似中心;②分別連接并延長位似中心和能代表原圖的關(guān)鍵點;③根據(jù)相似比,確定能代表所作的位似圖形的關(guān)鍵點;順次連接上述各點,確定位似圖形.6、A【解析】【分析】根據(jù)配方法步驟解題即可.【詳解】解:移項得,配方得,即,∴a=-4,b=21.故選:A【考點】本題考查了配方法解一元二次方程,解題關(guān)鍵是配方:在二次項系數(shù)為1時,方程兩邊同時加上一次項系數(shù)一半的平方.二、多選題1、ABCD【解析】【分析】根據(jù)正方形的性質(zhì)及垂直的定義證明△CAD≌△GFA,即可判斷A選項;證明四邊形CBFG是矩形,由此判斷B選項;根據(jù)矩形的性質(zhì)及等腰直角三角形的性質(zhì)即可判斷C選項;證明△CAD∽△EFQ,即可判斷D選項.【詳解】解:∵四邊形ADEF為正方形,∴,∴,∵FG⊥CA,∴,∴,∴,∴△CAD≌△GFA,∴AC=FG,故A選項正確;∵,∴GF∥BC,∵CB=CA,CA=GF,∴GF=BC,∴四邊形CBFG是平行四邊形,∵,∴四邊形CBFG是矩形,∴S△FAB:S四邊形CBFG=1:2,故B選項正確;∵四邊形CBFG是矩形,∴,∵CB=CA,∠ACB=90°,∴,∴,故C選項正確;∵四邊形ADEF為正方形,∴,AD=EF,∴,∵四邊形CBFG是矩形,∴,∴,∴,∵,∴,∵,∴△CAD∽△EFQ,∴,∵AD=EF,∴AD2=FQ?AC,故D選項正確;故選:ABCD.【考點】此題考查矩形的判定及性質(zhì),等腰直角三角形的性質(zhì),正方形的性質(zhì),全等三角形的判定及性質(zhì),相似三角形的判定及性質(zhì),熟記各知識點并熟練應用解決問題是解題的關(guān)鍵.2、ABC【解析】【分析】根據(jù)相似三角形的判定定理逐項判斷即可.【詳解】解:A、∵∠ACP=∠B,∠A=∠A,∴△APC∽△ACB,故選項A符合題意;B、∵∠APC=∠ACB,∠A=∠A,∴△APC∽△ACB,故選項B符合題意;C、∵AC2=AP·AB,∠A=∠A,∴△APC∽△ACB,故選項C符合題意;D、AB·CP=AP·CB不是兩個對應邊成比例,不能證明△APC和△ACB相似,故選項D不符合條件,故選:ABC.【考點】本題考查相似三角形的判定,熟練掌握相似三角形的判定方法是解答的關(guān)鍵.3、ABD【解析】【分析】根據(jù)有兩組角對應相等的兩個三角形相似可對A、B、C進行判斷;根據(jù)兩組對應邊的比相等且夾角對應相等的兩個三角形相似可對D進行判斷.【詳解】解:∵∠ACP=∠B,∠A公共角,∴△APC∽△ACB,故選項A正確,符合題意;∵∠APC=∠ACB,∠A公共角,∴△APC∽△ACB,故選項B正確,符合題意;∵∠CAP=∠BAC,只有一組角相等,∴不能判斷△APC和△ACB相似,故選項C錯誤,不符合題意;∵,∠A是夾角,∴△APC∽△ACB,故選項D正確,符合題意.故答案為:ABD.【考點】本題考查了相似三角形的判定:兩組對應邊的比相等且夾角對應相等的兩個三角形相似;有兩組角對應相等的兩個三角形相似.4、BD【解析】【分析】根據(jù)配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1,(3)等式兩邊同時加上一次項系數(shù)一半的平方即可得到結(jié)論.【詳解】A.化為,正確,不符合題意;B.化為,錯誤,符合題意;C.化為,正確,不符合題意;D.化為,錯誤,符合題意.故選:BD.【考點】此題考查了配方法解一元二次方程,屬于基礎題,熟練掌握配方法的一般步驟是解題關(guān)鍵.5、ABD【解析】【分析】根據(jù)相似三角形的判定方法求解即可.【詳解】解:A、或,不能判定,符合題意;B、且,不能判定,符合題意;C、且,能判定,不符合題意;D、且,不能判定,符合題意.故選:ABD.【考點】此題考查了相似三角形的判定方法,解題的關(guān)鍵是熟練掌握相似三角形的判定方法.相似三角形的判定方法:兩邊對應成比例且夾角相等的兩個三角形相似;三邊對應成比例的兩個三角形相似;兩角對應相等的兩個三角形相似.6、ABC【解析】【分析】根據(jù)題意可得四邊形ABCD是平行四邊形,然后利用矩形的判定定理,即可求解.【詳解】解:∵四邊形ABCD的對角線互相平分,∴四邊形ABCD是平行四邊形,∴AB=CD,AD∥BC,故A、B符合題意;若AB=BC,可得到四邊形ABCD是菱形,故C符合題意;若AC=BD,可得到四邊形ABCD是矩形,故D不符合題意;故選ABC.【考點】本題主要考查了矩形的判定,平行四邊形的性質(zhì)與判定熟練掌握矩形的判定定理是解題的關(guān)鍵.三、填空題1、①②④【解析】【分析】根據(jù)三角形的全等的知識可以判斷①的正誤;根據(jù)角角之間的數(shù)量關(guān)系,以及三角形內(nèi)角和為180°判斷②的正誤;根據(jù)等邊三角形的邊長求得直角三角形的邊長,從而求得面積③的正誤,根據(jù)勾股定理列方程可以判斷④的正誤.【詳解】解:∵四邊形ABCD是正方形,∴AB=AD,∵△AEF是等邊三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC-BE=CD-DF,∴CE=CF,∴①說法正確;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②說法正確;∵正方形ABCD的邊長為1,③說法錯誤,∵∠AEB=75°,∠AEF=60°,∴∠CEF=45°,∴△CEF是等腰直角三角形,設BE=DF=x,∴CE=CF=1-x,(不合題意,舍去),∴EF=;④說法正確;∴正確的有①②④.故答案為①②④.【考點】本題主要考查正方形的性質(zhì)的知識點,解答本題的關(guān)鍵是熟練掌握全等三角形的證明以及輔助線的正確作法,此題難度不大.2、10【解析】【分析】根據(jù)相似三角形的對應邊的比相等列式計算即可.【詳解】∵△AOC∽△BOD,∴,即,解得:BD=10.故答案為10.【考點】本題考查了相似三角形的性質(zhì),掌握相似三角形的對應角相等,對應邊的比相等是解題的關(guān)鍵.3、-3【解析】【分析】由題意可把x=2代入一元二次方程進行求解a的值,然后再進行求解方程的另一個根.【詳解】解:由題意把x=2代入一元二次方程得:,解得:,∴原方程為,解方程得:,∴方程的另一個根為-3;故答案為-3.【考點】本題主要考查一元二次方程的解及其解法,熟練掌握一元二次方程的解及其解法是解題的關(guān)鍵.4、【解析】【分析】根據(jù)一元二次方程解的定義將x=1代入即可求出a的值.【詳解】解:∵關(guān)于的方程的一個根是∴解得:a=-1故答案為:.【考點】此題考查的是根據(jù)一元二次方程的解,求參數(shù)的值,掌握一元二次方程解的定義是解決此題的關(guān)鍵.5、2或-3##-3或2【解析】【分析】根據(jù)題意得到關(guān)于x的一元二次方程,解方程即可.【詳解】解:∵,∴,∴,解得或,故答案為:2或-3.【考點】本題主要考查了新定義下的實數(shù)運算,解一元二次方程,正確理解題意是解題的關(guān)鍵.6、8【解析】【分析】根據(jù)題意,觀察圖形可得圖中的陰影部分的面積是圖中正方形面積的一半,且AB∥x軸,BC∥y軸,而正方形面積為16,由此可以求出陰影部分的面積.【詳解】解:根據(jù)題意:觀察圖形可得,圖中以B、D為頂點的小陰影部分,繞點O順時針旋轉(zhuǎn)90°,正好和以A、C為頂點的小空白部分重合,所以陰影的面積是圖中正方形面積的一半,且AB∥x軸,BC∥y軸,反比例函數(shù)與的圖象均與正方形ABCD的邊相交,而邊長為4的正方形面積為16,所以圖中的陰影部分的面積是8.故答案為:8.【考點】本題主要考查反比例函數(shù)圖象和性質(zhì)的應用,關(guān)鍵是要分析出其圖象特點,再結(jié)合性質(zhì)作答.7、,或【解析】【分析】設AE=m,根據(jù)勾股定理求出m的值,得到點E(1,),設點P坐標為(0,y),根據(jù)勾股定理列出方程,即可得到答案.【詳解】∵對角線AC的垂直平分線交AB于點E,∴AE=CE,∵OA=1,OC=2,∴AB=OC=2,BC=OA=1,∴設AE=m,則BE=2-m,CE=m,∴在Rt?BCE中,BE2+BC2=CE2,即:(2-m)2+12=m2,解得:m=,∴E(1,),設點P坐標為(0,y),∵△AEP是以為AE為腰的等腰三角形,當AP=AE,則(1-0)2+(0-y)2=(1-1)2+(0-)2,解得:y=,當EP=AE,則(1-0)2+(-y)2=(1-1)2+(0-)2,解得:y=,∴點P的坐標為,,,故答案是:,,.【考點】本題主要考查等腰三角形的定義,勾股定理,矩形的性質(zhì),垂直平分線的性質(zhì),掌握勾股定理,列出方程,是解題的關(guān)鍵.8、5【解析】【分析】根據(jù)相似三角形的性質(zhì)確定兩直角邊的比值為1:2,以及6×6網(wǎng)格圖形中,最長線段為6,進行嘗試,可確定、、為邊的這樣一組三角形滿足條件.【詳解】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=,AC:BC=1:2,∴與Rt△ABC相似的格點三角形的兩直角邊的比值為1:2,若該三角形最短邊長為4,則另一直角邊長為8,但在6×6網(wǎng)格圖形中,最長線段為6,但此時畫出的直角三角形為等腰直角三角形,從而畫不出端點都在格點且長為8的線段,故最短直角邊長應小于4,在圖中嘗試,可畫出DE=,EF=2,DF=5的三角形,∵===,∴△ABC∽△DEF,∴∠DEF=∠C=90°,∴此時△DEF的面積為:×2÷2=10,△DEF為面積最大的三角形,其斜邊長為:5.故答案為:5.【考點】本題考查了作圖-應用與設計、相似三角形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學會利用數(shù)形結(jié)合的思想解決問題,屬于中考填空題中的壓軸題.四、解答題1、(1);(2)或;(3)在x軸上是否存在點P,見解析.【解析】【分析】(1)設反比例函數(shù)的解析式為y=(k>0),然后根據(jù)條件求出A點坐標,再求出k的值,進而求出反比例函數(shù)的解析式;(2)直接由圖象得出正比例函數(shù)值小于反比例函數(shù)值時自變量x的取值范圍;(3)首先證明四邊形OABC是菱形,然后求出AC、OB的長度,計算出菱形OABC的面積,從而得到△OCP的面積,列方程求解即可..【詳解】解:(1)設反比例函數(shù)的解析式為y=(k>0),∵A(m,?2)在y=2x上,∴?2=2m,∴m=?1,∴A(?1,?2),又∵點A在y=上,∴k=2,∴反比例函數(shù)的解析式為y=2x;

(2)由反比例函數(shù)的對稱性可知,與一次函數(shù)再第一象限內(nèi)的交點坐標為:(1,2),觀察圖像可知:正比例函數(shù)值小于反比例函數(shù)值時自變量的取值范圍:或;(3)在上,

即,,四邊形為菱形

的解析式為y=2x-3,

的解析式,

假設在軸上存在使,,假設成立,在軸上存在點使【考點】本題主要考查了反比例函數(shù)的綜合,解答本題的關(guān)鍵是熟練掌握反比例函數(shù)的性質(zhì)以及菱形的判定定理,此題難度不大,是一道不錯的中考試題.2、(1)BD=10cm,AC=cm(2)菱形的面積為cm2【解析】【分析】(1)利用已知條件易求BD的長,再由勾股定理可求出AO的長,進而可求對角線AC的長;(2)利用菱形的面積等于其對角線積的一半,即可求得面積.(1)解:在菱形ABCD中,AB=AD=10cm,∠BAD=60°,∴△ABD是等邊三角形,∴BD=10cm.由菱形的性質(zhì)知AC⊥BD,BO=DO,OA=OC,∴BO=BD=5cm,在Rt△AOB中,AO==cm,∴AC=2AO=(cm).(2)解:菱形的面積為×10×=(cm2).【考點】本題主要考查的是菱形的性質(zhì):菱形的四條邊都相等,對角線互相垂直平分,還考查了勾股定理的應用.3、-1【解析】【分析】設===k,則a+b=3k,b+c=4k,c+a=5k,把三式相加得到a+b+c=6k,再利用加減消元法可計算出a=2k,b=k,c=3k,然后把a=2k,b=k,c=3k代入中進行分式的化簡求值即可.【詳解】解:設===k,則a+b=3k,b+c=4k,c+a=5k,三式相加得a+b+c=6k①用①式分別減去上述三個式子,可得出解得a=2k,b=k,c=3k,所以==-1.【考點】本題考查了比例的性質(zhì),掌握設比法求值是解題關(guān)鍵.4、(1)見解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論