重難點解析重慶市巴南中學(xué)7年級數(shù)學(xué)下冊第四章三角形同步訓(xùn)練試卷(詳解版)_第1頁
重難點解析重慶市巴南中學(xué)7年級數(shù)學(xué)下冊第四章三角形同步訓(xùn)練試卷(詳解版)_第2頁
重難點解析重慶市巴南中學(xué)7年級數(shù)學(xué)下冊第四章三角形同步訓(xùn)練試卷(詳解版)_第3頁
重難點解析重慶市巴南中學(xué)7年級數(shù)學(xué)下冊第四章三角形同步訓(xùn)練試卷(詳解版)_第4頁
重難點解析重慶市巴南中學(xué)7年級數(shù)學(xué)下冊第四章三角形同步訓(xùn)練試卷(詳解版)_第5頁
已閱讀5頁,還剩26頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

重慶市巴南中學(xué)7年級數(shù)學(xué)下冊第四章三角形同步訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,已知AB=AD,CB=CD,可得△ABC≌△ADC,則判斷的依據(jù)是()A.SSS B.SAS C.ASA D.HL2、定理:三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.已知:如圖,∠ACD是△ABC的外角.求證:∠ACD=∠A+∠B.證法1:如圖,∵∠A=70°,∠B=63°,且∠ACD=133°(量角器測量所得)又∵133°=70°+63°(計算所得)∴∠ACD=∠A+∠B(等量代換).證法2:如圖,∵∠A+∠B+∠ACB=180°(三角形內(nèi)角和定理),又∵∠ACD+∠ACB=180°(平角定義),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代換).∴∠ACD=∠A+∠B(等式性質(zhì)).下列說法正確的是()A.證法1用特殊到一般法證明了該定理B.證法1只要測量夠100個三角形進(jìn)行驗證,就能證明該定理C.證法2還需證明其他形狀的三角形,該定理的證明才完整D.證法2用嚴(yán)謹(jǐn)?shù)耐评碜C明了該定理3、已知:如圖,∠BAD=∠CAE,AB=AD,∠B=∠D,則下列結(jié)論正確的是()A.AC=DE B.∠ABC=∠DAE C.∠BAC=∠ADE D.BC=DE4、三根小木棒擺成一個三角形,其中兩根木棒的長度分別是和,那么第三根小木棒的長度不可能是()A. B. C. D.5、若三條線段中a=3,b=5,c為奇數(shù),那么以a、b、c為邊組成的三角形共有()A.1個 B.2個 C.3個 D.4個6、已知三角形的兩邊長分別是3cm和7cm,則下列長度的線段中能作為第三邊的是()A.3cm B.4cm C.7cm D.10cm7、如圖,在△ABC和△BAD中,AC=BD,要使△ABC≌△BAD,則需要添加的條件是()A.∠BAD=∠ABC B.∠BAC=∠ABD C.∠DAC=∠CBD D.∠C=∠D8、下列各組線段中,能構(gòu)成三角形的是()A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、69、如圖,在中,AD、AE分別是邊BC上的中線與高,,CD的長為5,則的面積為()A.8 B.10 C.20 D.4010、如圖,若MB=ND,∠MBA=∠NDC,下列條件中不能判定的是()A.AM=CN B. C.AB=CD D.∠M=∠N第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,正三角形△ABC和△CDE,A,C,E在同一直線上,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.成立的結(jié)論有_____.(填序號)2、如圖,與的頂點A、B、D在同一直線上,,,,延長分別交、于點F、G.若,,則______.3、已知a,b,c是△ABC的三邊,化簡:|a+b-c|+|b-a-c|=________.4、如圖,要測量水池的寬度,可從點出發(fā)在地面上畫一條線段,使,再從點觀測,在的延長線上測得一點,使,這時量得,則水池寬的長度是______m.5、如圖,點A、B在直線l上,點C是直線l外一點,可知CA+CB>AB,其依據(jù)是_____.6、如圖,在△ABC中,點D為BC邊延長線上一點,若∠ACD=75°,∠A=45°,則∠B的度數(shù)為__________.7、如圖,△ABC的面積等于35,AE=ED,BD=3DC,則圖中陰影部分的面積等于_______8、如圖,A,B在一水池的兩側(cè),,,AC,BD交于點E,,若,則水池寬______m.9、一個等腰三角形的一邊長為2,另一邊長為9,則它的周長是________________.10、如圖,,,、分別為線段和射線上的一點,若點從點出發(fā)向點運動,同時點從點出發(fā)向點運動,二者速度之比為,運動到某時刻同時停止,在射線上取一點,使與全等,則的長為________.三、解答題(6小題,每小題10分,共計60分)1、在中,,,點D是直線AC上一動點,連接BD并延長至點E,使.過點E作于點F.(1)如圖1,當(dāng)點D在線段AC上(點D不與點A和點C重合)時,此時DF與DC的數(shù)量關(guān)系是______.(2)如圖2,當(dāng)點D在線段AC的延長線上時,依題意補(bǔ)全圖形,并證明:.(3)當(dāng)點D在線段CA的延長線上時,直接用等式表示線段AD,AF,EF之間的數(shù)量關(guān)系是______.2、已知:如圖,CD=BE,CD∥BE,AD∥CE.求證:△ACD≌△CBE.3、平行線是平面幾何中最基本、也是非常重要的圖形.在解決某些幾何問題時,若能根據(jù)問題的需要,添加適當(dāng)?shù)钠叫芯€,往往能使證明順暢、簡潔.請根據(jù)上述思想解決問題:(1)如圖(1),ABCD,試判斷∠B,∠D與∠E的關(guān)系;(2)如圖(2),已知ABCD,在∠ACD的角平分線上取兩個點M、N,使得∠AMN=∠ANM,求證:∠CAM=∠BAN.4、證明“全等三角形的對應(yīng)角的平分線相等”.要求:將已有圖形根據(jù)題意補(bǔ)充完整,并據(jù)此寫出己知、求證和證明過程.5、如圖,點D在AB上,E在AC上,AB=AC,∠B=∠C,求證:AD=AE.6、在復(fù)習(xí)課上,老師布置了一道思考題:如圖所示,點M,N分別在等邊的邊上,且,,交于點Q.求證:.同學(xué)們利用有關(guān)知識完成了解答后,老師又提出了下列問題:(1)若將題中“”與“”的位置交換,得到的是否仍是真命題?請你給出答案并說明理由.(2)若將題中的點M,N分別移動到的延長線上,是否仍能得到?請你畫出圖形,給出答案并說明理由.-參考答案-一、單選題1、A【分析】由利用邊邊邊公理證明即可.【詳解】解:故選A【點睛】本題考查的是全等三角形的判定,掌握“利用邊邊邊公理證明三角形全等”是解本題的關(guān)鍵.2、D【分析】利用測量的方法只能是驗證,用定理,定義,性質(zhì)結(jié)合嚴(yán)密的邏輯推理推導(dǎo)新的結(jié)論才是證明,再逐一分析各選項即可得到答案.【詳解】解:證法一只是利用特殊值驗證三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,證法2才是用嚴(yán)謹(jǐn)?shù)耐评碜C明了該定理,故A不符合題意,C不符合題意,D符合題意,證法1測量夠100個三角形進(jìn)行驗證,也只是驗證,不能證明該定理,故B不符合題意;故選D【點睛】本題考查的是三角形的外角的性質(zhì)的驗證與證明,理解驗證與證明的含義及證明的方法是解本題的關(guān)鍵.3、D【分析】根據(jù)已知條件利用ASA證明可得AC=AE,BC=DE,進(jìn)而逐一進(jìn)行判斷.【詳解】解:∵∠BAD=∠CAE,∴∠BAD-∠CAD=∠CAE-∠CAD,即∠BAC=∠DAE,所以B、C選項錯誤;在和中,,∴(ASA),∴AC=AE,BC=DE.所以A選項錯誤;D選項正確.故選:D.【點睛】本題考查了全等三角形的判定與性質(zhì),解決本題的關(guān)鍵是掌握全等三角形的判定與性質(zhì).4、D【分析】設(shè)第三根木棒長為x厘米,根據(jù)三角形的三邊關(guān)系可得8﹣5<x<8+5,確定x的范圍即可得到答案.【詳解】解:設(shè)第三根木棒長為x厘米,由題意得:8﹣5<x<8+5,即3<x<13,故選:D.【點睛】此題主要考查了三角形的三邊關(guān)系,要注意三角形形成的條件:任意兩邊之和>第三邊,任意兩邊之差<第三邊.5、C【分析】根據(jù)三角形的三邊關(guān)系,得到合題意的邊,進(jìn)而求得三角形的個數(shù).【詳解】解:c的范圍是:5﹣3<c<5+3,即2<c<8.∵c是奇數(shù),∴c=3或5或7,有3個值.則對應(yīng)的三角形有3個.故選:C.【點睛】本題主要考查了三角形三邊關(guān)系,準(zhǔn)確分析判斷是解題的關(guān)鍵.6、C【分析】設(shè)三角形第三邊的長為xcm,再根據(jù)三角形的三邊關(guān)系求出x的取值范圍,找出符合條件的x的值即可.【詳解】解:設(shè)三角形的第三邊是xcm.則7-3<x<7+3.即4<x<10,四個選項中,只有選項C符合題意,故選:C.【點睛】本題主要考查了三角形三邊關(guān)系的應(yīng)用.此類求三角形第三邊的范圍的題,實際上就是根據(jù)三角形三邊關(guān)系定理列出不等式,然后解不等式即可.7、B【分析】利用全等三角形的判定方法對各選項進(jìn)行判斷.【詳解】解:∵AC=BD,而AB為公共邊,A、當(dāng)∠BAD=∠ABC時,“邊邊角”不能判斷△ABC≌△BAD,該選項不符合題意;B、當(dāng)∠BAC=∠ABD時,根據(jù)“SAS”可判斷△ABC≌△BAD,該選項符合題意;C、當(dāng)∠DAC=∠CBD時,由三角形內(nèi)角和定理可推出∠D=∠C,“邊邊角”不能判斷△ABC≌△BAD,該選項不符合題意;D、同理,“邊邊角”不能判斷△ABC≌△BAD,該選項不符合題意;故選:B.【點睛】本題考查了全等三角形的判定,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.8、C【分析】根據(jù)三角形的三邊關(guān)系定理逐項判斷即可得.【詳解】解:三角形的三邊關(guān)系定理:任意兩邊之和大于第三邊.A、,不能構(gòu)成三角形,此項不符題意;B、,不能構(gòu)成三角形,此項不符題意;C、,能構(gòu)成三角形,此項符合題意;D、,不能構(gòu)成三角形,此項不符題意;故選:C.【點睛】本題考查了三角形的三邊關(guān)系定理,熟練掌握三角形的三邊關(guān)系定理是解題關(guān)鍵.9、C【分析】根據(jù)三角形中線的性質(zhì)得出CB的長為10,再用三角形面積公式計算即可.【詳解】解:∵AD是邊BC上的中線,CD的長為5,∴CB=2CD=10,的面積為,故選:C.【點睛】本題考查了三角形中線的性質(zhì)和面積公式,解題關(guān)鍵是明確中線的性質(zhì)求出底邊長.10、A【分析】根據(jù)兩個三角形全等的判定定理,有AAS、SSS、ASA、SAS四種.逐條驗證.【詳解】解:A、根據(jù)條件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故A選項符合題意;B、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故B選項不符合題意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C選項不符合題意;D、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故D選項不符合題意.故選:A.【點睛】本題重點考查了三角形全等的判定定理,兩個三角形全等共有四個定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本題是一道較為簡單的題目.二、填空題1、①②③⑤【分析】①由于△ABC和△CDE是等邊三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,從而證出△ACD≌△BCE,可推知AD=BE;③由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故③正確;②根據(jù)③△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內(nèi)錯角相等,兩直線平行,可知②正確;④根據(jù)∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④錯誤;⑤利用等邊三角形的性質(zhì),BC∥DE,再根據(jù)平行線的性質(zhì)得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正確.【詳解】解:①∵等邊△ABC和等邊△DCE,∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;故①正確;③∵△ACD≌△BCE(已證),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已證),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP與△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ;故③正確;②∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等邊三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE;故②正確;④∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,∴DE≠Q(mào)E,∴DP≠DE;故④錯誤;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故⑤正確;綜上所述,正確的結(jié)論有:①②③⑤.故答案為:①②③⑤.【點睛】本題綜合考查等邊三角形判定與性質(zhì)、全等三角形的判定與性質(zhì)、平行線的判定與性質(zhì)等知識點的運用.要求學(xué)生具備運用這些定理進(jìn)行推理的能力.2、【分析】先證明△ABC≌△EDB,可得∠E=,然后利用三角形外角的性質(zhì)求解.【詳解】解:∵,∴∠ABC=∠D,在△ABC和△EDB中,∴△ABC≌△EDB,∴∠E=,∴,,∴∠EGF=30°+50°=80°,∴80°+30°=110°,故答案為:110°.【點睛】本題考查了平行線的性質(zhì),全等三角形的判定與性質(zhì),以及三角形外角的性質(zhì),熟練掌握三角形的外角等于不相鄰的兩個內(nèi)角和是解答本題的關(guān)鍵.3、【分析】首先利用三角形的三邊關(guān)系得出,然后根據(jù)求絕對值的法則進(jìn)行化簡即可.【詳解】解:∵是的三條邊,∴,∴=.故答案為:.【點睛】熟悉三角形的三邊關(guān)系和求絕對值的法則,是解題的關(guān)鍵,注意,去絕對值后,要先添加括號,再去括號,這樣不容易出錯.|a+b-c|+|b-a-c|4、160【分析】利用全等三角形的性質(zhì)解決問題即可.【詳解】解:,,在與中,,≌,,故答案為:.【點睛】本題考查全等三角形的應(yīng)用,解題關(guān)鍵是理解題意,正確尋找全等三角形解決問題.5、在三角形中,兩邊之和大于第三邊【分析】根據(jù)三角形兩邊之和大于第三邊進(jìn)行求解即可.【詳解】解:∵點A、B在直線l上,點C是直線l外一點,∴A、B、C可以構(gòu)成三角形,∴由三角形三邊的關(guān)系:在三角形中,兩邊之和大于第三邊可以得到:CA+CB>AB,故答案為:在三角形中,兩邊之和大于第三邊.【點睛】本題主要考查了三角形三邊的關(guān)系,熟知三角形中兩邊之和大于第三邊是解題的關(guān)鍵.6、30°【分析】根據(jù)三角形的外角的性質(zhì),即可求解.【詳解】解:∵,∴,∵∠ACD=75°,∠A=45°,∴.故答案為:30°【點睛】本題主要考查了三角形的外角性質(zhì),熟練掌握三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和是解題的關(guān)鍵.7、15【分析】連接DF,根據(jù)AE=ED,BD=3DC,可得,,,,然后設(shè)△AEF的面積為x,△BDE的面積為y,則,,,,再由△ABC的面積等于35,即可求解.【詳解】解:如圖,連接DF,∵AE=ED,∴,,∵BD=3DC,∴,設(shè)△AEF的面積為x,△BDE的面積為y,則,,,,∵△ABC的面積等于35,∴,解得:.故答案為:15【點睛】本題主要考查了與三角形中線有關(guān)的面積問題,根據(jù)題意得到,,,是解題的關(guān)鍵.8、80【分析】根據(jù)“”證明即可得出.【詳解】解:∵,,∴,在和中,,∴,∵,∴,故答案為:.【點睛】本題考查了全等三角形的實際應(yīng)用,熟練掌握全等三角形的判定定理以及性質(zhì)定理是解本題的關(guān)鍵.9、20【分析】題目給出等腰三角形有兩條邊長為2和9,而沒有明確腰、底分別是多少,所以要進(jìn)行討論,還要應(yīng)用三角形的三邊關(guān)系驗證能否組成三角形.【詳解】解:分兩種情況:當(dāng)腰為2時,2+2<9,所以不能構(gòu)成三角形;當(dāng)腰為9時,2+9>9,所以能構(gòu)成三角形,周長是:2+9+9=20.故答案為:20.【點睛】本題考查了等腰三角形的性質(zhì)和三角形的三邊關(guān)系;已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進(jìn)行討論,還應(yīng)驗證各種情況是否能構(gòu)成三角形進(jìn)行解答,這點非常重要,也是解題的關(guān)鍵.10、2或6或2【分析】設(shè)BE=t,則BF=2t,使△AEG與△BEF全等,由∠A=∠B=90°可知,分兩種情況:情況一:當(dāng)BE=AG,BF=AE時,列方程解得t,可得AG;情況二:當(dāng)BE=AE,BF=AG時,列方程解得t,可得AG.【詳解】解:設(shè)BE=t,則BF=2t,AE=6-t,因為∠A=∠B=90°,使△AEG與△BEF全等,可分兩種情況:情況一:當(dāng)BE=AG,BF=AE時,∵BF=AE,AB=6,∴2t=6-t,解得:t=2,∴AG=BE=t=2;情況二:當(dāng)BE=AE,BF=AG時,∵BE=AE,AB=6,∴t=6-t,解得:t=3,∴AG=BF=2t=2×3=6,綜上所述,AG=2或AG=6.故答案為:2或6.【點睛】本題主要考查了全等三角形的性質(zhì),利用分類討論思想是解答此題的關(guān)鍵.三、解答題1、(1)(2)見解析(3)【分析】(1)利用邊相等和角相等,直接證明,即可得到結(jié)論.(2)利用邊相等和角相等,直接證明,得到和,最后通過邊與邊之間的關(guān)系,即可證明結(jié)論成立.(3)要證明,先利用邊相等和角相等,直接證明,得到和,最后通過邊與邊之間的關(guān)系,即可證明結(jié)論成立.【詳解】(1)解:,,,在和中,,.(2)解:當(dāng)點D在線段AC的延長線上時,如下圖所示:,,,在和中,,,,.(3)解:,如下圖所示:,,,在和中,,,,.【點睛】本題主要是考查了三角形全等的判定和性質(zhì),熟練利用條件證明三角形全等,然后利用邊相等以及邊與邊之間關(guān)系,即可證明結(jié)論成立,這是解決該題的關(guān)鍵.2、見解析【分析】根據(jù)兩直線平行,同位角相等,求出∠ACD=∠B,,然后利用AAS即可證明△ACD≌△CBE.【詳解】證明:如圖,在和中(AAS).【點睛】本題主要考查了全等三角形的判定,解題關(guān)鍵是掌握全等三角形判定方法,找準(zhǔn)邊角對應(yīng)條件.3、(1)∠BED=∠B+∠D;(2)證明見詳解.【分析】(1)作EF∥AB,證明AB∥EF∥CD,得到∠B=∠BEF,∠D=∠DEF,即可證明∠BED=∠B+∠D;(2)根據(jù)(1)結(jié)論得到∠N=∠BAN+∠DCN,進(jìn)而得到∠AMN=∠BAN+∠DCN,根據(jù)三角形外角定理得到∠AMN=∠ACM+∠CAM,∠BAN+∠DCN=∠ACM+∠CAM,再根據(jù)∠DCN=∠CAN,即可證明∠CAM=∠BAN.【詳解】解:如圖1,作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠BEF,∠D=∠DEF,∵∠BED=∠BEF+∠DEF,∴∠BED=∠B+∠D;(2)證明:∵AB∥CD,∴由(1)得∠N=∠BAN+∠DCN,∵∠AMN=∠ANM,∴∠AMN=∠BAN+∠DCN,∵∠AMN是△ACM外角,∴∠AMN=∠ACM+∠CAM,∴∠BAN+∠DCN=∠ACM+∠CAM,∵CN平分∠ACD,∴∠DCN=∠CAN,∴∠CAM=∠BAN.【點睛】本題考查了平行線的性質(zhì),角平分線的定義,三角形的外角定理等知識,熟知相關(guān)定理并根據(jù)題意添加輔助線進(jìn)行角的轉(zhuǎn)化是解題關(guān)鍵.4、見解析.【分析】根據(jù)圖形和命題寫出已知求證,根據(jù)全等三角形的性質(zhì)得出∠B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論