版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
黑龍江省海倫市中考數(shù)學(xué)真題分類(勾股定理)匯編章節(jié)測(cè)評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,長(zhǎng)方體的底面邊長(zhǎng)分別為2cm和3cm,高為6cm.如果用一根細(xì)線從點(diǎn)A開始經(jīng)過(guò)4個(gè)側(cè)面纏繞一圈達(dá)到點(diǎn)B,那么所用細(xì)線最短需要(
)A.11cm B.2cm C.(8+2)cm D.(7+3)cm2、在△ABC中,AB=10,AC=2,BC邊上的高AD=6,則另一邊BC等于(
)A.10 B.8 C.6或10 D.8或103、如圖,矩形中,的平分線交于點(diǎn)E,,垂足為F,連接.下列結(jié)論:①;②;③;④;⑤若,則.其中正確的結(jié)論有(
)A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)4、如圖,桌上有一個(gè)圓柱形玻璃杯(無(wú)蓋)高6厘米,底面周長(zhǎng)16厘米,在杯口內(nèi)壁離杯口1.5厘米的A處有一滴蜜糖,在玻璃杯的外壁,A的相對(duì)方向有一小蟲P,小蟲離杯底的垂直距離為1.5厘米,小蟲爬到蜜糖處的最短距離是(
)A.厘米 B.10厘米 C.厘米 D.8厘米5、如圖,中,,將折疊,使點(diǎn)C與的中點(diǎn)D重合,折痕交于點(diǎn)M,交于點(diǎn)N,則線段的長(zhǎng)為(
).A. B. C.3 D.6、有一個(gè)面積為1的正方形,經(jīng)過(guò)一次“生長(zhǎng)”后,在他的左右肩上生出兩個(gè)小正方形,其中,三個(gè)正方形圍成的三角形是直角三角形,再經(jīng)過(guò)一次“生長(zhǎng)”后,變成了上圖,如果繼續(xù)“生長(zhǎng)”下去,它將變得“枝繁葉茂”,請(qǐng)你算出“生長(zhǎng)”了2020次后形成的圖形中所有的正方形的面積和是(
)A.1 B.2021 C.2020 D.20197、如圖,在中,,cm,cm,點(diǎn)、分別在、邊上.現(xiàn)將沿翻折,使點(diǎn)落在點(diǎn)處.連接,則長(zhǎng)度的最小值為(
)A.0 B.2 C.4 D.6第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,在離水面高度為8米的岸上,有人用繩子拉船靠岸,開始時(shí)繩子BC的長(zhǎng)為17米,幾分鐘后船到達(dá)點(diǎn)D的位置,此時(shí)繩子CD的長(zhǎng)為10米,問船向岸邊移動(dòng)了__米.2、如圖,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,點(diǎn)E在BC上,將△ABC沿AE折疊,使點(diǎn)B落在AC邊上的點(diǎn)B′處,則BE的長(zhǎng)為________________.3、我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載了一個(gè)問題:“今有池方一丈,葭(ji?。┥渲?,出水一尺.引葭赴岸(丈、尺是長(zhǎng)度單位,1丈10尺)其大意為:有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形,它高出水面1尺(即BC=1尺).如果把這根蘆葦拉向水池一邊的中點(diǎn),它的頂端B恰好到達(dá)池邊的水面D處,問水的深度是多少?則水深DE為_____尺.4、如圖,Rt△ABC中,∠C=90°,在△ABC外取點(diǎn)D,E,使AD=AB,AE=AC,且α+β=∠B,連結(jié)DE.若AB=4,AC=3,則DE=__.5、如圖,在四邊形ABCD中,,,,,,那么四邊形ABCD的面積是___________.6、如圖,一艘輪船位于燈塔P的南偏東方向,距離燈塔50海里的A處,它沿正北方向航行一段時(shí)間后,到達(dá)位于燈塔P的北偏東方向上的B處,此時(shí)B處與燈塔P的距離為___________海里(結(jié)果保留根號(hào)).7、如圖,在中,,,,現(xiàn)將沿進(jìn)行翻折,使點(diǎn)剛好落在上,則__________.8、圖①所示的正方體木塊棱長(zhǎng)為6cm,沿其相鄰三個(gè)面的對(duì)角線(圖中虛線)剪掉一角,得到如圖②的幾何體,一只螞蟻沿著圖②的幾何體表面從頂點(diǎn)A爬行到頂點(diǎn)B的最短距離為_____cm.三、解答題(7小題,每小題10分,共計(jì)70分)1、我方偵查員小王在距離東西向公路400米處偵查,發(fā)現(xiàn)一輛敵方汽車在公路上疾駛.他趕緊拿出紅外線測(cè)距儀,測(cè)得汽車與他相距400米,10秒后,汽車與他相距500米,你能幫小王計(jì)算敵方汽車的速度嗎?2、如圖,AD是△ABC的中線,DE⊥AC于點(diǎn)E,DF是△ABD的中線,且CE=2,DE=4,AE=8.(1)求證:;(2)求DF的長(zhǎng).3、如圖,將一個(gè)長(zhǎng)方形紙片ABCD沿對(duì)角線AC折疊,點(diǎn)B落在點(diǎn)E處,AE交DC于點(diǎn)F,已知AB=4,BC=2,求折疊后重合部分的面積.4、已知:如圖,四邊形ABCD,∠A=90°,AD=12,AB=16,CD=15,BC=25.(1)求BD的長(zhǎng);(2)求四邊形ABCD的面積.5、如圖,點(diǎn)是正方形內(nèi)一點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到的位置,若,求的度數(shù).6、閱讀與思考:請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù).若直角三角形的三邊的長(zhǎng)都是正整數(shù),則三邊的長(zhǎng)為“勾股數(shù)”.構(gòu)造勾股數(shù),就是要尋找3個(gè)正整數(shù),使它們滿足“其中兩個(gè)數(shù)的平方和(或平方差)等于第三個(gè)數(shù)的平方”.通過(guò)觀察常見勾股數(shù)“3,4,5”;“5,12,13”;“7,24,25”……猜想當(dāng)一組勾股數(shù)中(),最小數(shù)為奇數(shù)時(shí),另兩個(gè)正整數(shù)和滿足比且,解得,.任務(wù):(1)請(qǐng)證明猜想成立,即證明,,構(gòu)成勾股數(shù).(2)若一組勾股數(shù)中,最小數(shù)為9,則另兩個(gè)數(shù)分別是________和________.7、閱讀理解:課堂上學(xué)習(xí)了勾股定理后,知道“勾三、股四、弦五”.王老師給出一組數(shù)讓學(xué)生觀察:3,4,5;5,12,13;7,24,25;9,40,41;……學(xué)生發(fā)現(xiàn)這些勾股數(shù)的勾都是奇數(shù),且從3起就沒有間斷過(guò),于是王老師提出以下問題讓學(xué)生解決.(1)請(qǐng)你根據(jù)上述的規(guī)律寫出下一組勾股數(shù):11,_________,_________;(2)若第一個(gè)數(shù)用字母(為奇數(shù),且)表示,則后兩個(gè)數(shù)用含的代數(shù)式分別怎么表示?聰明的小明發(fā)現(xiàn)每組第二個(gè)數(shù)有這樣的規(guī)律:,,,……于是他很快表示出了第二個(gè)數(shù)為,則用含的代數(shù)式表示第三個(gè)數(shù)為_________.(3)用所學(xué)知識(shí)說(shuō)明(2)中用表示的三個(gè)數(shù)是勾股數(shù).-參考答案-一、單選題1、B【解析】【詳解】要求所用細(xì)線的最短距離,需將長(zhǎng)方體的側(cè)面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果.解:將長(zhǎng)方體展開,連接AB′,則AB′最短.∵AA′=3+2+3+2=10cm,A′B′=6cm,∴AB′=cm.故選B..2、C【解析】【詳解】分兩種情況:在圖①中,由勾股定理,得;;∴BC=BD+CD=8+2=10.在圖②中,由勾股定理,得;;∴BC=BD―CD=8―2=6.故選C.3、D【解析】【分析】根據(jù)AE平分∠DAE,可得,從而得到AB=BE,進(jìn)而得到,可得①正確;然后證明△ABE≌△AFD,可得AB=BE=AF=FD,從而得到∠AED=∠CED,故②正確;再證得△DEF≌△DEC,可得③正確;再根據(jù)△ABF≌△DCF,可得BF=CF,故④正確;過(guò)點(diǎn)F作FG⊥BC于點(diǎn)G,可得,從而得到,進(jìn)而得到,可得⑤正確;即可求解.【詳解】解:在矩形中,∠BAD=∠ADC=∠ABC=90°,AD=BC,AD∥BC,∵AE平分∠DAE,∴,∵AD∥BC,∴∠DAE=∠AEB=45°,∴∠AEB=∠BAE=45°,∴AB=BE,∴,∵,∴AE=AD,故①正確;在△ABE和△AFD中,∵∠BAE=∠DAE,∠ABE=∠AFD,AE=AD,∴△ABE≌△AFD(AAS),∴BE=DF,∴AB=BE=AF=FD,∴,∴∠AED=∠CED,故②正確;∵∠DAE=45°,DF⊥AE,∴∠ADF=45°,∴∠CDF=45°,∠EDF=∠ADE-∠ADF=22.5°,∴∠CDE=∠FDE=22.5°,∵∠AEB=45°,∠AED=67.5°,∴∠CED=67.5°,∴∠AED=∠CED,∵DE=DE,∴△DEF≌△DEC,∴DF=CD,∴DE⊥CF,故③正確;∵AB=CD,∠BAE=∠CDF=45°,AF=DF,∴△ABF≌△DCF,∴BF=CF,故④正確;如圖,過(guò)點(diǎn)F作FG⊥BC于點(diǎn)G,∴FG∥AB,∴∠EFG=∠BAE=45°,∴∠EFG=∠FEG,∴FG=GE,∵△DEF≌△DEC,∴CE=EF,∴,∴,∵BF=CF,∴BG=CG,∴,∵AB=1,,∴,,解得:,∴.故⑤正確;∴正確的有5個(gè).故選:D【考點(diǎn)】本題主要考查了矩形的性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),勾股定理等知識(shí),熟練掌握相關(guān)知識(shí)點(diǎn)是解題的關(guān)鍵.4、B【解析】【分析】把圓柱沿著點(diǎn)A所在母線展開,把圓柱上最短距離轉(zhuǎn)化為將軍飲馬河型最短問題求解即可.【詳解】把圓柱沿著點(diǎn)A所在母線展開,如圖所示,作點(diǎn)A的對(duì)稱點(diǎn)B,連接PB,則PB為所求,根據(jù)題意,得PC=8,BC=6,根據(jù)勾股定理,得PB=10,故選B.【考點(diǎn)】本題考查了圓柱上的最短問題,利用圓柱展開,把問題轉(zhuǎn)化為將軍飲馬河問題,靈活使用勾股定理是解題的關(guān)鍵.5、D【解析】【分析】由折疊的性質(zhì)可得DN=CN,根據(jù)勾股定理可求DN的長(zhǎng),即可得出結(jié)果.【詳解】解:∵D是AB中點(diǎn),AB=4,∴AD=BD=2,∵將△ABC折疊,使點(diǎn)C與AB的中點(diǎn)D重合,∴DN=CN,∴BN=BC-CN=6-DN,在Rt△DBN中,DN2=BN2+DB2,∴DN2=(6-DN)2+4,∴DN=,∴CN=DN=,故選:D.【考點(diǎn)】本題考查了翻折變換、折疊的性質(zhì)、勾股定理,熟練運(yùn)用折疊的性質(zhì)是本題的關(guān)鍵.6、B【解析】【分析】根據(jù)勾股定理求出“生長(zhǎng)”了1次后形成的圖形中所有的正方形的面積和,結(jié)合圖形總結(jié)規(guī)律,根據(jù)規(guī)律解答即可.【詳解】解:由題意得,正方形A的面積為1,由勾股定理得,正方形B的面積+正方形C的面積=1,∴“生長(zhǎng)”了1次后形成的圖形中所有的正方形的面積和為2,同理可得,“生長(zhǎng)”了2次后形成的圖形中所有的正方形的面積和為3,∴“生長(zhǎng)”了3次后形成的圖形中所有的正方形的面積和為4,……∴“生長(zhǎng)”了2020次后形成的圖形中所有的正方形的面積和為2021,故選:B.【考點(diǎn)】本題考查了勾股定理,如果直角三角形的兩條直角邊長(zhǎng)分別是a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.7、C【解析】【分析】當(dāng)H落在AB上,點(diǎn)D與B重合時(shí),AH長(zhǎng)度的值最小,根據(jù)勾股定理得到AB=10cm,由折疊的性質(zhì)知,BH=BC=6cm,于是得到結(jié)論.【詳解】解:當(dāng)H落在AB上,點(diǎn)D與B重合時(shí),AH長(zhǎng)度的值最小,∵∠C=90°,AC=8cm,BC=6cm,∴AB=10cm,由折疊的性質(zhì)知,BH=BC=6cm,∴AH=AB-BH=4cm.故選:C.【考點(diǎn)】本題考查了翻折變換(折疊問題),勾股定理,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.二、填空題1、9.【解析】【分析】在Rt△ABC中,利用勾股定理計(jì)算出AB長(zhǎng),再根據(jù)題意可得CD長(zhǎng),然后再次利用勾股定理計(jì)算出AD長(zhǎng),再利用BD=AB-AD可得BD長(zhǎng).【詳解】在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸邊移動(dòng)了9米,故答案為:9.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,關(guān)鍵是掌握從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.2、.【解析】【分析】首先根據(jù)勾股定理求出BC的長(zhǎng),根據(jù)折疊性質(zhì),可得=AB=3,=BE,∠B=∠=90°,然后設(shè)BE=,根據(jù)勾股定理,列出,求解即可.【詳解】解:∵∠ABC=90°,AB=3,AC=5,在Rt△ABC中,,將△ABC沿AE折疊,∴=AB=3,=BE,∠B=∠=90°,則,設(shè)BE=,EC=4-,,在Rt△中,由勾股定理得:,即,解得,∴BE=.故答案為.【考點(diǎn)】本題主要考查了翻折變換的性質(zhì)及勾股定理的應(yīng)用;解題的關(guān)鍵是準(zhǔn)確找出圖形中隱含的相等關(guān)系.3、12【解析】【分析】設(shè)水深為h尺,則蘆葦長(zhǎng)為(h+1)尺,根據(jù)勾股定理列方程,解出h即可.【詳解】設(shè)水深為h尺,則蘆葦長(zhǎng)為(h+1)尺,根據(jù)勾股定理,得(h+1)2-h2=52解得h=12,∴水深為12尺,故答案是:12.【考點(diǎn)】本題主要考查勾股定理的應(yīng)用,熟練根據(jù)勾股定理列出方程是解題的關(guān)鍵.4、5【解析】【分析】根據(jù)角度轉(zhuǎn)換,得到三角形ADE是直角三角形,然后運(yùn)用勾股定理計(jì)算出DE的長(zhǎng).【詳解】∵∠B+∠C+∠BAC=180°,∠C=90°,∴∠B+∠BAC=90°.∵α+β=∠B,∴∠DAE=α+β+∠BAC==∠B+∠BAC=90°.∴△ADE是直角三角形.∴DE===5.【考點(diǎn)】本題主要考查到運(yùn)用勾股定理求長(zhǎng)度,說(shuō)明三角形ADE是直角三角形是解題的關(guān)鍵.5、+24【解析】【分析】連結(jié)BD,可求出BD=6,再根據(jù)勾股定理逆定理,得出△BDC是直角三角形,兩個(gè)三角形面積相加即可.【詳解】解:連結(jié)BD,∵,∴,∵,,∴BD=6,∵BD2=36,CD2=64,BC2=100,BD2+CD2=BC2,∴∠BDC=90°,S△ABD=,S△BDC=,四邊形ABCD的面積是=S△ABD+S△BDC=+24故答案為:+24.【考點(diǎn)】本題考查勾股定理以及逆定理,三角形的面積等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考??碱}型.6、.【解析】【分析】先作PC⊥AB于點(diǎn)C,然后利用勾股定理進(jìn)行求解即可.【詳解】解:如圖,作PC⊥AB于點(diǎn)C,在Rt△APC中,AP=50海里,∠APC=90°-60°=30°,∴海里,海里,在Rt△PCB中,PC=海里,∠BPC=90°-45°=45°,∴PC=BC=海里,∴海里,故答案為:.【考點(diǎn)】此題主要考查了勾股定理的應(yīng)用-方向角問題,求三角形的邊或高的問題一般可以轉(zhuǎn)化為用勾股定理解決問題,解決的方法就是作高線.7、【解析】【詳解】解:設(shè)CD=x,則AD=A′D=4-x.在直角三角形ABC中,BC==5.則A′C=BC-AB=BC-A′B=5-3=2.在直角三角形A′DC中:AD2+AC2=CD2.即:(4-x)2+22=x2.解得:x=.故答案為:2.58、(3+3).【解析】【分析】要求螞蟻爬行的最短距離,需將圖②的幾何體表面展開,進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果.【詳解】如圖所示:△BCD是等腰直角三角形,△ACD是等邊三角形,在Rt△BCD中,CD==6cm,∴BE=CD=3cm,在Rt△ACE中,AE==3cm,∴從頂點(diǎn)A爬行到頂點(diǎn)B的最短距離為(3+3)cm.故答案為(3+3).【考點(diǎn)】本題考查了平面展開-最短路徑問題,關(guān)鍵是把圖②的幾何體表面展開成平面圖形,根據(jù)等腰直角三角形的性質(zhì)和等邊三角形的性質(zhì)解題.三、解答題1、速度為30米每秒【解析】【分析】根據(jù)勾股定理求得的長(zhǎng)度,再根據(jù)速度等于路程除以時(shí)間即可求得敵方汽車的速度.【詳解】,,米每秒,答:敵方汽車的速度為30米每秒.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,掌握勾股定理是解題的關(guān)鍵.2、(1)見解析(2)DF的長(zhǎng)為5.【解析】【分析】(1)利用勾股定理的逆定理,證明△ADC是直角三角形,即可得出∠ADC是直角;(2)根據(jù)三角形的中線的定義以及直角三角形的性質(zhì)解答即可.(1)證明:∵DE⊥AC于點(diǎn)E,∴∠AED=∠CED=90°,在Rt△ADE中,∠AED=90°,∴AD2=AE2+DE2=82+42=80,同理:CD2=20,∴AD2+CD2=80+20=100,∵AC=AE+CE=8+2=10,∴AC2=100,∴AD2+CD2=AC2,∴△ADC是直角三角形,∴∠ADC=90°;(2)解:∵AD是△ABC的中線,∠ADC=90°,∴AD垂直平分BC,∴AB=AC=10,在Rt△ADB中,∠ADB=90°,∵點(diǎn)F是邊AB的中點(diǎn),∴DF=AB=5.∴DF的長(zhǎng)為5.【考點(diǎn)】本題主要考查了直角三角形的性質(zhì)與判定,垂直平分線的判定和的性質(zhì),熟記勾股定理與逆定理是解答本題的關(guān)鍵.3、【解析】【分析】先由折疊可知EC=BC=2,進(jìn)而可知AD=CE,通過(guò)全等三角形的角角邊判定定理可證明△ADF≌△CEF,由全等可知FE=DF,設(shè)FC為x,則FE=DF=4-x,根據(jù)直角三角形的勾股定理可列方程,從而計(jì)算出CF的長(zhǎng)度,通過(guò)CF與AD的長(zhǎng)度可計(jì)算出重合部分面積.【詳解】解:∵△AEC是由△ABC沿AC折疊后得到的,∴EC=BC=2,且∠E=∠B=90°,在△ADF與△CEF中,,∴△ADF≌△CEF(AAS),設(shè)FC=x,則FE=DF=4-x,在Rt△CEF中,由勾股定理可知:,∴,解得,∴,故折疊后重合部分的面積為.【考點(diǎn)】本題考查圖形折疊的相關(guān)性質(zhì),以及直角三角形的勾股定理的應(yīng)用,以及全等三角形的判定,找到合適的條件,選擇適合的判定方法去證明全等三角形,利用勾股定理和方程思想列方程是解決本題的關(guān)鍵.4、(1)BD=20;(2)S四邊形ABCD=246.【解析】【分析】(1)由∠A=90°,AD=12,AB=16,利用勾股定理:BD2=AD2+AB2,從而可得答案;(2)利用勾股定理的逆定理證明:∠CDB=90°,再由四邊形的面積等于兩個(gè)直角三角形的面積之和可得答案.【詳解】解:(1)∵∠A=90°,AD=12,AB=16,∴BD2=AD2+AB2,∴BD2=122+162,∴BD=20;(2)∵BD2+CD2=202+152=625,CB2=252=625,∴BD2+CD2=CB2,∴∠CDB=90°,∴S四邊形ABCD=SRt△ABD+SRt△CBD,=246.【考點(diǎn)】本題考查的是勾股定理與勾股定理的逆定理的應(yīng)用,掌握以上知識(shí)是解題的關(guān)鍵.5、【解析】【分析】連接EE`,如圖,根據(jù)旋轉(zhuǎn)的性質(zhì)得BE=BE'=2,AE=CE'=1,∠EBE`=90°,則可判斷△BEE`為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)得EE`=BE=2,∠BE`E=45°,在△CEE'中,由于CE`+EE'=CE,根據(jù)勾股定理的逆定
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 護(hù)士資格證臨床實(shí)踐考試題及答案
- 地質(zhì)災(zāi)害防治工程師崗位面試問題及答案
- 醫(yī)院藥庫(kù)考試題目及答案
- 德州高一語(yǔ)文試題及答案
- 除塵工培訓(xùn)試題及答案
- 創(chuàng)新性心理護(hù)理技術(shù)在精神科的應(yīng)用
- 2026高校區(qū)域技術(shù)轉(zhuǎn)移轉(zhuǎn)化中心(福建)新型功能材料分中心招聘5人參考題庫(kù)必考題
- 上海煙草集團(tuán)有限責(zé)任公司2026年應(yīng)屆生招聘參考題庫(kù)附答案
- 北京中國(guó)石油大學(xué)教育基金會(huì)招聘2人考試備考題庫(kù)必考題
- 北京第七實(shí)驗(yàn)學(xué)校(北京市平谷區(qū)國(guó)農(nóng)港學(xué)校) 面向全國(guó)招聘參考題庫(kù)附答案
- 新華資產(chǎn)招聘筆試題庫(kù)2025
- 智能化項(xiàng)目驗(yàn)收流程指南
- 搶劫案件偵查課件
- 2026年遼寧軌道交通職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)必考題
- 雨課堂在線學(xué)堂《中國(guó)古代舞蹈史》單元考核測(cè)試答案
- 老年人遠(yuǎn)離非法集資講座
- 沙子石子采購(gòu)合同范本
- 軍采協(xié)議供貨合同范本
- 2025年醫(yī)院年度應(yīng)急演練計(jì)劃表
- 衛(wèi)生所藥品自查自糾報(bào)告
- 2024年新高考Ⅰ卷英語(yǔ)真題(原卷+答案)
評(píng)論
0/150
提交評(píng)論